<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          上漲趨勢策略

          共 8796字,需瀏覽 18分鐘

           ·

          2021-04-04 08:45

          看了聚寬上大神寫的上漲趨勢策略,感覺不錯。感興趣的可以轉(zhuǎn)至苦咖啡《上漲趨勢策略修改版》,地址為:

          https://www.joinquant.com/view/community/detail/15c783ea414ddac3abb8fd55f39df2cc?type=1

          隨著中美對抗的持續(xù)進行,原有很多以美國為出口主要對象的企業(yè)必然走向內(nèi)卷,大企業(yè)之間的競爭也將進一步加大,只會強者恒強,進一步走向壟斷。A股全面注冊制也將到來,小盤股時代終將結(jié)束,跟著機構(gòu)抱團,找大型的,具有壟斷特征的股票才是出路。

          作者在掘金平臺上對該策略進行了實現(xiàn),對2019到2020年進行了回測,表現(xiàn)不錯。

          b74c5a136458ac7bbea9b7a948cf9d84.webp

          策略源碼如下,覺得有幫助的,還望點贊關(guān)注!對量化投資感興趣的小伙伴可以添加如下微信群,一起用技術(shù)改變世界,實現(xiàn)財務自由。

          掘金實盤可參考掘金量化實盤指導

          # coding=utf-8from gm.api import *
          # 克隆自聚寬文章:https://www.joinquant.com/post/31232# 標題:2020年 267%年化 13%回撤 上漲趨勢策略修改版# 作者:苦咖啡
          # 克隆自聚寬文章:https://www.joinquant.com/post/31232# 標題:2020年 267%年化 13%回撤 上漲趨勢策略修改版# 作者:苦咖啡
          # 克隆自聚寬文章:https://www.joinquant.com/post/30863# 標題:上漲股策略2020年收益123%# 作者:scottchenrui
          # 2021-02-06# 張連重 掘金實現(xiàn)
          import numpy as npfrom scipy.stats import linregressfrom gm.api import *from datetime import datetimeimport pandas as pdfrom jqdatasdk import *
          #?jqdata?login??需替換為個人聚寬賬號auth('15520768082','ZXXXXXX')

          # 初始化函數(shù),設定要操作的股票、基準等等def init(context): # 最大建倉數(shù)量 context.max_hold_stock_nums = 2 # 選出來的股票 context.target_lists = []
          schedule(schedule_func=check_stocks, date_rule='1w', time_rule='09:32:00') schedule(schedule_func=sell, date_rule='1w', time_rule='09:34:00') schedule(schedule_func=buy, date_rule='1w', time_rule='09:35:00')

          # 股票篩選def check_stocks(context): today = context.now.strftime("%Y-%m-%d") last_date = get_trade_days(end_date=today, count=2)[0] current = context.now.strftime("%Y-%m-%d %H:%M:%S") last_date = get_trade_days(end_date=today, count=2)[0] # 滬深300成分股 check_out_lists = get_index_stocks("000300.XSHG", date=last_date)
          check_out_lists = st_check(context,check_out_lists) check_out_lists = science_check(context,check_out_lists) stocks = filter_stks_listed_n_days(check_out_lists,last_date,100) df = get_price(stocks,end_date=current,frequency='1m',fields=['open','close','high_limit','low_limit','paused'] ,count=1,panel=False) df = df[(df['close'] < df['high_limit']) & (df['close'] > df['low_limit']) & (df['paused'] == 0)] checked_stocks = df['code'].tolist()
          # 昨收盤價不高于260元/股 s_close_1 = get_price(checked_stocks,end_date=last_date,frequency='1d',fields=['close'] ,count=1,panel=False) s_close_1.drop(['time'], axis=1,inplace=True) s_close_1.set_index(["code"], inplace=True) check_out_lists = list(s_close_1[s_close_1['close'] <= 260].index)
          # 近30個交易日的最高價 / 昨收盤價 <=1.1, 即HHV(HIGH,30)/C[-1] <= 1.1 high_30 = get_price(check_out_lists,end_date=last_date,frequency='1d',fields=['high'] ,count=30,panel=False) high_max_30 = high_30.pivot(index='time',columns='code',values='high').max() dict_high_max_30 = {'code':high_max_30.index,'high':high_max_30.values} df_high_max_30 = pd.DataFrame(dict_high_max_30) df_high_max_30.set_index('code',drop=True,inplace=True) s_fall = df_high_max_30['high'] / s_close_1['close'] check_out_lists = list(s_fall[s_fall <= 1.1].index) # 近7個交易日的交易量均值 與 近180給交易日的成交量均值 相比,放大不超過1.5倍 MA(VOL,7)/MA(VOL,180) <=1.5 volume_180 = get_price(check_out_lists,end_date=last_date,frequency='1d',fields=['volume'] ,count=180,panel=False) volume_mean_7 = volume_180.pivot(index='time',columns='code',values='volume').iloc[-7:].mean() volume_mean_180 = volume_180.pivot(index='time',columns='code',values='volume').mean() s_vol_ratio = volume_mean_7 / volume_mean_180 check_out_lists = list(s_vol_ratio[s_vol_ratio <= 1.5].index)

          # 對近120個交易日的股價進行線性回歸:入選條件 slope / intercept > 0.005 and r_value**2 > 0.8 target_dict = {} x = np.arange(120) for stock in check_out_lists: y = get_price(stock,end_date=last_date,frequency='1d',fields=['close'] ,count=120,panel=False)['close'] slope, intercept, r_value, p_value, std_err = linregress(x, y) if slope / intercept > 0.005 and r_value ** 2 > 0.8: target_dict[stock] = r_value ** 2
          # 入選股票按照R Square 降序排序, 取前N名 context.target_lists = [] if target_dict: df_score = pd.DataFrame.from_dict( target_dict, orient='index', columns=['score', ] ).sort_values( by='score', ascending=False ) # context.target_lists = list(df_score.index[:context.max_hold_stock_nums])
          # 去除ST股票def st_check(context,security_list): currentDate = context.now.strftime("%Y-%m-%d") current_data = get_extras('is_st', security_list, end_date=currentDate, df=True, count=1) security_list = [stock for stock in security_list if not current_data[stock][-1]] # 返回結(jié)果 return security_list
          #def filter_stks_listed_n_days(source_stk_list, end_date, n=100): # type: (list, Union[str, datetime.date, datetime.datetime], int) -> list """ 過濾掉source_stk_list中尚未上市的,或者上市天數(shù)不足n天的股票 """ # 1. 取得n個交易日之前的交易日期trd_date trd_date = get_trade_days(end_date=end_date, count=n)[0] # 2. 取trd_date日就已經(jīng)上市的所有股票 all_stks = get_all_securities(date=trd_date) # 3. 過濾source_stk_list,剔除掉不在all_stks中的 valid_stk_list = list(all_stks[all_stks.index.isin(source_stk_list)].index) return valid_stk_list
          # 去除科創(chuàng)板股票def science_check(context,security_list): stock_list = [] for stock in security_list: if not stock.startswith('688'): stock_list.append(stock) # 返回結(jié)果 return stock_list



          # 交易函數(shù) - 入場def buy(context): buy_lists = context.target_lists if buy_lists: amount = context.account().cash['nav'] / len(buy_lists) for stock in buy_lists: stock_code_jj = transStockCode(stock,'JJ') if stock_code_jj in get_position_list(context): account_position = context.account().position(symbol=stock_code_jj,side = PositionSide_Long) if abs(amount - account_position['amount']) > account_position['price'] * 100 + 5: _order = order_target_value(symbol=stock, value=amount, position_side=PositionSide_Long, order_type=OrderType_Market) if _order is not None: print('調(diào)倉: %s (%s)' % (get_security_info(stock).display_name, stock)) for stock in buy_lists: stock_code_jj = transStockCode(stock,'JJ') if stock_code_jj not in get_position_list(context): _order = order_target_value(symbol=stock_code_jj, value=amount, position_side=PositionSide_Long, order_type=OrderType_Market) if _order is not None: print('買入: %s (%s)' % (get_security_info(stock).display_name, stock))

          def sell(context): """ 賣出不在buy_lists中的股票 """ buy_lists = context.target_lists for stock in get_position_list(context): stock_code_jk = transStockCode(stock,'JK') if stock_code_jk not in buy_lists: _order = order_target_value(symbol=stock, value=0, position_side=PositionSide_Long, order_type=OrderType_Market) if _order is not None: print('賣出: %s (%s)' % (get_security_info(stock_code_jk).display_name, stock))
          ## def transStockListCode(stock_list_src,target_type): stock_list_target = [] if target_type=='JJ': for stock in stock_list_src: target = 'SHSE' if stock[7:]=='XSHG' else 'SZSE' stock_list_target.append(target +'.'+ stock[0:6]) elif target_type=='JK': for stock in stock_list_src: target = 'XSHG' if stock[0:4]=='SHSE' else 'XSHE' stock_list_target.append(stock[5:] +'.'+ target) return stock_list_target

          ## 單股名稱轉(zhuǎn)換def transStockCode(stock_src,target_type): if target_type=='JJ': target = 'SHSE' if stock_src[7:]=='XSHG' else 'SZSE' return target +'.'+ stock_src[0:6] elif target_type=='JK': target = 'XSHG' if stock_src[0:4]=='SHSE' else 'XSHE' return stock_src[5:] +'.'+ target
          ## 獲取持倉股票列表def get_position_list(context): in_stock = [] Account_positions = context.account().positions() for position in Account_positions: in_stock.append(position['symbol']) return in_stock
          if __name__ == '__main__': ''' strategy_id策略ID, 由系統(tǒng)生成 filename文件名, 請與本文件名保持一致 mode運行模式, 實時模式:MODE_LIVE回測模式:MODE_BACKTEST token綁定計算機的ID, 可在系統(tǒng)設置-密鑰管理中生成 backtest_start_time回測開始時間 backtest_end_time回測結(jié)束時間 backtest_adjust股票復權(quán)方式, 不復權(quán):ADJUST_NONE前復權(quán):ADJUST_PREV后復權(quán):ADJUST_POST backtest_initial_cash回測初始資金 backtest_commission_ratio回測傭金比例 backtest_slippage_ratio回測滑點比例 ''' run(strategy_id='b056605f-687a-11eb-8a4e-5254009e6375', filename='main.py', mode=MODE_BACKTEST,????????token='f8e34a0dacdbbbba2f2cab37b9c01772f80c53', backtest_start_time='2019-01-01 08:00:00', backtest_end_time='2021-02-10 16:00:00', backtest_adjust=ADJUST_PREV, backtest_initial_cash=50000, backtest_commission_ratio=0.0001, backtest_slippage_ratio=0.0001)


          瀏覽 81
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  一本大道久久 | 天堂av影院 | 婷婷综合资源网 | 国产一级a毛一级a免费看视频 | 91色情网老熟女 |