談?wù)剆tream的運行原理
害,別誤會,我這里說的stream不是流式編程,不是大數(shù)據(jù)處理框架。我這里說的是stream指的是jdk中的一個開發(fā)工具包stream. 該工具包在jdk8中出現(xiàn),可以說已經(jīng)是冷飯了,為何還要你說?只因各家一言,不算得自家理解,如若有空,何多聽一版又何妨。
本篇主要從幾個方面講講:1. 我們常見的stream都有哪些?2. stream包有哪些好處?3. stream包的實現(xiàn)原理?相信這些多少會解開大家的一些迷惑。
1:我們常見的stream都有哪些?
stream直接翻譯為流。何謂流?我們最常見的,比如網(wǎng)絡(luò)中的數(shù)據(jù)傳輸,即tcp/udp那一套東西,都是建立在二進制流的基礎(chǔ)上的。用流來形容這些數(shù)據(jù)或文件的傳輸,非常形象,因為數(shù)據(jù)總是源源不斷地從一端流向另一端,這是不流是什么。只是,傳輸?shù)搅硪欢酥螅覀冊僮鼋馕觯阌辛藬?shù)據(jù)或文件之說。其實這說的,便是高層協(xié)議了。
另說一個stream, 那就是jdk中的各種InputStream了,它用于讀取文件數(shù)據(jù),讀取byte數(shù)據(jù),其實也是源源不斷將數(shù)據(jù)從一個設(shè)備流入到另一設(shè)備。jdk中有InputStream/OutputStream, 作為根基,其上則是各種 FileInputStream, FileOutputStream, FileReader, FileWriter,... 實際上,整個io包幾乎都是在圍繞流這個概念來展開的。可見,io是相當(dāng)?shù)闹匾 ?/span>
再說一stream, 則是對大數(shù)據(jù)的處理了,stream,即是實時數(shù)據(jù)處理的重要技術(shù)實現(xiàn),因與實時二字吻合,恰好又類似于數(shù)據(jù)從一設(shè)備流入另一設(shè)備,且是實時的。所以,stream在大數(shù)據(jù)領(lǐng)域也是大放異彩啊!比如 spark, flink 你可知?比如 圖數(shù)據(jù)庫語言標(biāo)準(zhǔn) gremlin 的算子。
還有更多的流概念,更多的流實現(xiàn),不必細(xì)說,也無法細(xì)說。單只知道,流無處不在,非常重要。
還有本文要議的stream包,到底是何生物,且看后續(xù)說來。
2. stream包有何好處?
stream包,在java中是以一個工具包的形式存在,即你用則以,不用亦可。
那么,用它到底有何好處?好處主要有二:1.可以減少冗余代碼的編寫;比如要寫一個過濾器則只需調(diào)用一filter()傳入處理邏輯即可;2.可以很方便的利用一些隱藏的升級好處或者多核帶來的好處;(當(dāng)然你可能用不上這些好處)
說實話,這兩個功能,看起來實際沒有太多的誘惑力,但凡我們封裝幾個方法,供外部調(diào)用,不也可以達(dá)到同等效果?是了!如果你有這等造詣,能夠抽象出足夠通用的方法,供各方使用,那你不算大牛何人算?說到底,stream也就是高手封裝的工具包而已。
來幾個應(yīng)用實例,看看stream都如何使用的:
public class StreamUtilTest {@Testpublic void testArrayStream() {// 1. 過濾值;改變值;排序;Integer[] intArr = {1, 2, 3, 5, 22, 8, 5};List<Integer> iArrList = Arrays.stream(intArr).filter(r -> r < 20).map(r -> r + 1).sorted().collect(Collectors.toList());System.out.println("result:" + iArrList);String[] strArr = {"a1,a2", "q,y,h", "ddd,bb,n", null};// 2. 過濾數(shù)組;拆分值;輸出;Arrays.stream(strArr).filter(Objects::nonNull).flatMap(r -> Arrays.stream(r.split(","))).forEach(System.out::println);}@Testpublic void testListStream() {List<String> list = new ArrayList<>();list.add("ab");list.add("ccc");list.add("ddd");// 3. 求list中的最大值Optional<String> maxStr = list.stream().max(Comparator.naturalOrder());System.out.println(maxStr);}}
害,不必糾結(jié)里面干的事情復(fù)不復(fù)雜,有沒有意義,只知道有這用法即可。反正就當(dāng)你會這么用,即能解決這般問題。這也是我們高級語言使用必備技能,學(xué)會調(diào)用api.
不過需要說明的,java中有一句老話,叫做萬事萬物皆對象。但見上面的寫法,自然不太像對象。是了,這是lamda語法,雖說另一主題,但何妨在此處一題。但既然說到這,不妨來想想這lamda到底是何物?從某種角度來說,它可以看作是一種內(nèi)部類,不過寫法不太一樣。但是當(dāng)我們仔細(xì)觀察class文件的變化情況時,發(fā)現(xiàn)它與內(nèi)部類又不太一致,因為java的內(nèi)部類會在class中生成$xx.class的類文件,而lamda表達(dá)式卻不會。但是不管怎么樣,它是可以使用內(nèi)部類的表達(dá)方式獲得同樣的效果,只需將該類代入到其中,即可達(dá)到同樣的效果。
但要細(xì)說lamda表達(dá)式,則可以反編譯下class文件,可以見些許端倪。
# 調(diào)用lamda表達(dá)式示例...59: invokestatic #4 // Method java/util/Arrays.stream:([Ljava/lang/Object;)Ljava/util/stream/Stream;62: invokedynamic #5, 0 // InvokeDynamic #0:test:()Ljava/util/function/Predicate;67: invokeinterface #6, 2 // InterfaceMethod java/util/stream/Stream.filter:(Ljava/util/function/Predicate;)Ljava/util/stream/Stream;72: invokedynamic #7, 0 // InvokeDynamic #1:apply:()Ljava/util/function/Function;77: invokeinterface #8, 2 // InterfaceMethod java/util/stream/Stream.map:(Ljava/util/function/Function;)Ljava/util/stream/Stream;...# 常量池定義,實際是定義了lamda的實現(xiàn)方式為 #0 號方法#5 = InvokeDynamic #0:#102 // #0:test:()Ljava/util/function/Predicate;# lamda表達(dá)式的具體實現(xiàn)1示例BootstrapMethods:0: #98 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;Method arguments:#99 (Ljava/lang/Object;)Z// 此處為調(diào)用具體的實現(xiàn)方法#100 invokestatic com/my/test/common/util/StreamUtilTest.lambda$testArrayStream$0:(Ljava/lang/Integer;)Z#101 (Ljava/lang/Integer;)Z1: #98 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;Method arguments:#105 (Ljava/lang/Object;)Ljava/lang/Object;#106 invokestatic com/my/test/common/util/StreamUtilTest.lambda$testArrayStream$1:(Ljava/lang/Integer;)Ljava/lang/Integer;#107 (Ljava/lang/Integer;)Ljava/lang/Integer;# lamda表達(dá)式具體實現(xiàn)2, 上一步的靜態(tài)調(diào)用private static boolean lambda$testArrayStream$0(java.lang.Integer);descriptor: (Ljava/lang/Integer;)Zflags: ACC_PRIVATE, ACC_STATIC, ACC_SYNTHETICCode:stack=2, locals=1, args_size=10: aload_01: invokevirtual #48 // Method java/lang/Integer.intValue:()I4: bipush 206: if_icmpge 139: iconst_110: goto 1413: iconst_014: ireturnLineNumberTable:line 16: 0LocalVariableTable:Start Length Slot Name Signature0 15 0 r Ljava/lang/Integer;StackMapTable: number_of_entries = 2frame_type = 13 /* same */frame_type = 64 /* same_locals_1_stack_item */stack = [ int ]MethodParameters:Name Flagsr synthetic
害,往深了就不說了。單說這lamda表達(dá)式,并非使用內(nèi)部類來實現(xiàn)的,而是使用內(nèi)部靜態(tài)函數(shù)來做的,所以也叫函數(shù)式編程呢。煩話休提。
最后,再來看看,這stream包究竟有何神圣地方?其實,就是一個以一個 Stream 接口定義為核心展開的,且看如下:
/*** A sequence of elements supporting sequential and parallel aggregate* operations. The following example illustrates an aggregate operation using* {@link Stream} and {@link IntStream}:** <pre>{@code* int sum = widgets.stream()* .filter(w -> w.getColor() == RED)* .mapToInt(w -> w.getWeight())* .sum();* }</pre>** In this example, {@code widgets} is a {@code Collection<Widget>}. We create* a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()},* filter it to produce a stream containing only the red widgets, and then* transform it into a stream of {@code int} values representing the weight of* each red widget. Then this stream is summed to produce a total weight.** <p>In addition to {@code Stream}, which is a stream of object references,* there are primitive specializations for {@link IntStream}, {@link LongStream},* and {@link DoubleStream}, all of which are referred to as "streams" and* conform to the characteristics and restrictions described here.** <p>To perform a computation, stream* <a href="package-summary.html#StreamOps">operations</a> are composed into a* <em>stream pipeline</em>. A stream pipeline consists of a source (which* might be an array, a collection, a generator function, an I/O channel,* etc), zero or more <em>intermediate operations</em> (which transform a* stream into another stream, such as {@link Stream#filter(Predicate)}), and a* <em>terminal operation</em> (which produces a result or side-effect, such* as {@link Stream#count()} or {@link Stream#forEach(Consumer)}).* Streams are lazy; computation on the source data is only performed when the* terminal operation is initiated, and source elements are consumed only* as needed.** <p>Collections and streams, while bearing some superficial similarities,* have different goals. Collections are primarily concerned with the efficient* management of, and access to, their elements. By contrast, streams do not* provide a means to directly access or manipulate their elements, and are* instead concerned with declaratively describing their source and the* computational operations which will be performed in aggregate on that source.* However, if the provided stream operations do not offer the desired* functionality, the {@link #iterator()} and {@link #spliterator()} operations* can be used to perform a controlled traversal.** <p>A stream pipeline, like the "widgets" example above, can be viewed as* a <em>query</em> on the stream source. Unless the source was explicitly* designed for concurrent modification (such as a {@link ConcurrentHashMap}),* unpredictable or erroneous behavior may result from modifying the stream* source while it is being queried.** <p>Most stream operations accept parameters that describe user-specified* behavior, such as the lambda expression {@code w -> w.getWeight()} passed to* {@code mapToInt} in the example above. To preserve correct behavior,* these <em>behavioral parameters</em>:* <ul>* <li>must be <a href="package-summary.html#NonInterference">non-interfering</a>* (they do not modify the stream source); and</li>* <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a>* (their result should not depend on any state that might change during execution* of the stream pipeline).</li>* </ul>** <p>Such parameters are always instances of a* <a href="../function/package-summary.html">functional interface</a> such* as {@link java.util.function.Function}, and are often lambda expressions or* method references. Unless otherwise specified these parameters must be* <em>non-null</em>.** <p>A stream should be operated on (invoking an intermediate or terminal stream* operation) only once. This rules out, for example, "forked" streams, where* the same source feeds two or more pipelines, or multiple traversals of the* same stream. A stream implementation may throw {@link IllegalStateException}* if it detects that the stream is being reused. However, since some stream* operations may return their receiver rather than a new stream object, it may* not be possible to detect reuse in all cases.** <p>Streams have a {@link #close()} method and implement {@link AutoCloseable},* but nearly all stream instances do not actually need to be closed after use.* Generally, only streams whose source is an IO channel (such as those returned* by {@link Files#lines(Path, Charset)}) will require closing. Most streams* are backed by collections, arrays, or generating functions, which require no* special resource management. (If a stream does require closing, it can be* declared as a resource in a {@code try}-with-resources statement.)** <p>Stream pipelines may execute either sequentially or in* <a href="package-summary.html#Parallelism">parallel</a>. This* execution mode is a property of the stream. Streams are created* with an initial choice of sequential or parallel execution. (For example,* {@link Collection#stream() Collection.stream()} creates a sequential stream,* and {@link Collection#parallelStream() Collection.parallelStream()} creates* a parallel one.) This choice of execution mode may be modified by the* {@link #sequential()} or {@link #parallel()} methods, and may be queried with* the {@link #isParallel()} method.** @param <T> the type of the stream elements* @since 1.8* @see IntStream* @see LongStream* @see DoubleStream* @see <a href="package-summary.html">java.util.stream</a>*/public interface Stream<T> extends BaseStream<T, Stream<T>> {/*** Returns a stream consisting of the elements of this stream that match* the given predicate.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to each element to determine if it* should be included* @return the new stream*/Stream<T> filter(Predicate<? super T> predicate);/*** Returns a stream consisting of the results of applying the given* function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param <R> The element type of the new stream* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/<R> Stream<R> map(Function<? super T, ? extends R> mapper);/*** Returns an {@code IntStream} consisting of the results of applying the* given function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">* intermediate operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/IntStream mapToInt(ToIntFunction<? super T> mapper);/*** Returns a {@code LongStream} consisting of the results of applying the* given function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/LongStream mapToLong(ToLongFunction<? super T> mapper);/*** Returns a {@code DoubleStream} consisting of the results of applying the* given function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);/*** Returns a stream consisting of the results of replacing each element of* this stream with the contents of a mapped stream produced by applying* the provided mapping function to each element. Each mapped stream is* {@link java.util.stream.BaseStream#close() closed} after its contents* have been placed into this stream. (If a mapped stream is {@code null}* an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @apiNote* The {@code flatMap()} operation has the effect of applying a one-to-many* transformation to the elements of the stream, and then flattening the* resulting elements into a new stream.** <p><b>Examples.</b>** <p>If {@code orders} is a stream of purchase orders, and each purchase* order contains a collection of line items, then the following produces a* stream containing all the line items in all the orders:* <pre>{@code* orders.flatMap(order -> order.getLineItems().stream())...* }</pre>** <p>If {@code path} is the path to a file, then the following produces a* stream of the {@code words} contained in that file:* <pre>{@code* Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);* Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));* }</pre>* The {@code mapper} function passed to {@code flatMap} splits a line,* using a simple regular expression, into an array of words, and then* creates a stream of words from that array.** @param <R> The element type of the new stream* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream*/<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);/*** Returns an {@code IntStream} consisting of the results of replacing each* element of this stream with the contents of a mapped stream produced by* applying the provided mapping function to each element. Each mapped* stream is {@link java.util.stream.BaseStream#close() closed} after its* contents have been placed into this stream. (If a mapped stream is* {@code null} an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream* @see #flatMap(Function)*/IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);/*** Returns an {@code LongStream} consisting of the results of replacing each* element of this stream with the contents of a mapped stream produced by* applying the provided mapping function to each element. Each mapped* stream is {@link java.util.stream.BaseStream#close() closed} after its* contents have been placed into this stream. (If a mapped stream is* {@code null} an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream* @see #flatMap(Function)*/LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);/*** Returns an {@code DoubleStream} consisting of the results of replacing* each element of this stream with the contents of a mapped stream produced* by applying the provided mapping function to each element. Each mapped* stream is {@link java.util.stream.BaseStream#close() closed} after its* contents have placed been into this stream. (If a mapped stream is* {@code null} an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream* @see #flatMap(Function)*/DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);/*** Returns a stream consisting of the distinct elements (according to* {@link Object#equals(Object)}) of this stream.** <p>For ordered streams, the selection of distinct elements is stable* (for duplicated elements, the element appearing first in the encounter* order is preserved.) For unordered streams, no stability guarantees* are made.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @apiNote* Preserving stability for {@code distinct()} in parallel pipelines is* relatively expensive (requires that the operation act as a full barrier,* with substantial buffering overhead), and stability is often not needed.* Using an unordered stream source (such as {@link #generate(Supplier)})* or removing the ordering constraint with {@link #unordered()} may result* in significantly more efficient execution for {@code distinct()} in parallel* pipelines, if the semantics of your situation permit. If consistency* with encounter order is required, and you are experiencing poor performance* or memory utilization with {@code distinct()} in parallel pipelines,* switching to sequential execution with {@link #sequential()} may improve* performance.** @return the new stream*/Stream<T> distinct();/*** Returns a stream consisting of the elements of this stream, sorted* according to natural order. If the elements of this stream are not* {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown* when the terminal operation is executed.** <p>For ordered streams, the sort is stable. For unordered streams, no* stability guarantees are made.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @return the new stream*/Stream<T> sorted();/*** Returns a stream consisting of the elements of this stream, sorted* according to the provided {@code Comparator}.** <p>For ordered streams, the sort is stable. For unordered streams, no* stability guarantees are made.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* {@code Comparator} to be used to compare stream elements* @return the new stream*/Stream<T> sorted(Comparator<? super T> comparator);/*** Returns a stream consisting of the elements of this stream, additionally* performing the provided action on each element as elements are consumed* from the resulting stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** <p>For parallel stream pipelines, the action may be called at* whatever time and in whatever thread the element is made available by the* upstream operation. If the action modifies shared state,* it is responsible for providing the required synchronization.** @apiNote This method exists mainly to support debugging, where you want* to see the elements as they flow past a certain point in a pipeline:* <pre>{@code* Stream.of("one", "two", "three", "four")* .filter(e -> e.length() > 3)* .peek(e -> System.out.println("Filtered value: " + e))* .map(String::toUpperCase)* .peek(e -> System.out.println("Mapped value: " + e))* .collect(Collectors.toList());* }</pre>** @param action a <a href="package-summary.html#NonInterference">* non-interfering</a> action to perform on the elements as* they are consumed from the stream* @return the new stream*/Stream<T> peek(Consumer<? super T> action);/*** Returns a stream consisting of the elements of this stream, truncated* to be no longer than {@code maxSize} in length.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* stateful intermediate operation</a>.** @apiNote* While {@code limit()} is generally a cheap operation on sequential* stream pipelines, it can be quite expensive on ordered parallel pipelines,* especially for large values of {@code maxSize}, since {@code limit(n)}* is constrained to return not just any <em>n</em> elements, but the* <em>first n</em> elements in the encounter order. Using an unordered* stream source (such as {@link #generate(Supplier)}) or removing the* ordering constraint with {@link #unordered()} may result in significant* speedups of {@code limit()} in parallel pipelines, if the semantics of* your situation permit. If consistency with encounter order is required,* and you are experiencing poor performance or memory utilization with* {@code limit()} in parallel pipelines, switching to sequential execution* with {@link #sequential()} may improve performance.** @param maxSize the number of elements the stream should be limited to* @return the new stream* @throws IllegalArgumentException if {@code maxSize} is negative*/Stream<T> limit(long maxSize);/*** Returns a stream consisting of the remaining elements of this stream* after discarding the first {@code n} elements of the stream.* If this stream contains fewer than {@code n} elements then an* empty stream will be returned.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @apiNote* While {@code skip()} is generally a cheap operation on sequential* stream pipelines, it can be quite expensive on ordered parallel pipelines,* especially for large values of {@code n}, since {@code skip(n)}* is constrained to skip not just any <em>n</em> elements, but the* <em>first n</em> elements in the encounter order. Using an unordered* stream source (such as {@link #generate(Supplier)}) or removing the* ordering constraint with {@link #unordered()} may result in significant* speedups of {@code skip()} in parallel pipelines, if the semantics of* your situation permit. If consistency with encounter order is required,* and you are experiencing poor performance or memory utilization with* {@code skip()} in parallel pipelines, switching to sequential execution* with {@link #sequential()} may improve performance.** @param n the number of leading elements to skip* @return the new stream* @throws IllegalArgumentException if {@code n} is negative*/Stream<T> skip(long n);/*** Performs an action for each element of this stream.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** <p>The behavior of this operation is explicitly nondeterministic.* For parallel stream pipelines, this operation does <em>not</em>* guarantee to respect the encounter order of the stream, as doing so* would sacrifice the benefit of parallelism. For any given element, the* action may be performed at whatever time and in whatever thread the* library chooses. If the action accesses shared state, it is* responsible for providing the required synchronization.** @param action a <a href="package-summary.html#NonInterference">* non-interfering</a> action to perform on the elements*/void forEach(Consumer<? super T> action);/*** Performs an action for each element of this stream, in the encounter* order of the stream if the stream has a defined encounter order.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** <p>This operation processes the elements one at a time, in encounter* order if one exists. Performing the action for one element* <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>* performing the action for subsequent elements, but for any given element,* the action may be performed in whatever thread the library chooses.** @param action a <a href="package-summary.html#NonInterference">* non-interfering</a> action to perform on the elements* @see #forEach(Consumer)*/void forEachOrdered(Consumer<? super T> action);/*** Returns an array containing the elements of this stream.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @return an array containing the elements of this stream*/Object[] toArray();/*** Returns an array containing the elements of this stream, using the* provided {@code generator} function to allocate the returned array, as* well as any additional arrays that might be required for a partitioned* execution or for resizing.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote* The generator function takes an integer, which is the size of the* desired array, and produces an array of the desired size. This can be* concisely expressed with an array constructor reference:* <pre>{@code* Person[] men = people.stream()* .filter(p -> p.getGender() == MALE)* .toArray(Person[]::new);* }</pre>** @param <A> the element type of the resulting array* @param generator a function which produces a new array of the desired* type and the provided length* @return an array containing the elements in this stream* @throws ArrayStoreException if the runtime type of the array returned* from the array generator is not a supertype of the runtime type of every* element in this stream*/<A> A[] toArray(IntFunction<A[]> generator);/*** Performs a <a href="package-summary.html#Reduction">reduction</a> on the* elements of this stream, using the provided identity value and an* <a href="package-summary.html#Associativity">associative</a>* accumulation function, and returns the reduced value. This is equivalent* to:* <pre>{@code* T result = identity;* for (T element : this stream)* result = accumulator.apply(result, element)* return result;* }</pre>** but is not constrained to execute sequentially.** <p>The {@code identity} value must be an identity for the accumulator* function. This means that for all {@code t},* {@code accumulator.apply(identity, t)} is equal to {@code t}.* The {@code accumulator} function must be an* <a href="package-summary.html#Associativity">associative</a> function.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote Sum, min, max, average, and string concatenation are all special* cases of reduction. Summing a stream of numbers can be expressed as:** <pre>{@code* Integer sum = integers.reduce(0, (a, b) -> a+b);* }</pre>** or:** <pre>{@code* Integer sum = integers.reduce(0, Integer::sum);* }</pre>** <p>While this may seem a more roundabout way to perform an aggregation* compared to simply mutating a running total in a loop, reduction* operations parallelize more gracefully, without needing additional* synchronization and with greatly reduced risk of data races.** @param identity the identity value for the accumulating function* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values* @return the result of the reduction*/T reduce(T identity, BinaryOperator<T> accumulator);/*** Performs a <a href="package-summary.html#Reduction">reduction</a> on the* elements of this stream, using an* <a href="package-summary.html#Associativity">associative</a> accumulation* function, and returns an {@code Optional} describing the reduced value,* if any. This is equivalent to:* <pre>{@code* boolean foundAny = false;* T result = null;* for (T element : this stream) {* if (!foundAny) {* foundAny = true;* result = element;* }* else* result = accumulator.apply(result, element);* }* return foundAny ? Optional.of(result) : Optional.empty();* }</pre>** but is not constrained to execute sequentially.** <p>The {@code accumulator} function must be an* <a href="package-summary.html#Associativity">associative</a> function.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values* @return an {@link Optional} describing the result of the reduction* @throws NullPointerException if the result of the reduction is null* @see #reduce(Object, BinaryOperator)* @see #min(Comparator)* @see #max(Comparator)*/Optional<T> reduce(BinaryOperator<T> accumulator);/*** Performs a <a href="package-summary.html#Reduction">reduction</a> on the* elements of this stream, using the provided identity, accumulation and* combining functions. This is equivalent to:* <pre>{@code* U result = identity;* for (T element : this stream)* result = accumulator.apply(result, element)* return result;* }</pre>** but is not constrained to execute sequentially.** <p>The {@code identity} value must be an identity for the combiner* function. This means that for all {@code u}, {@code combiner(identity, u)}* is equal to {@code u}. Additionally, the {@code combiner} function* must be compatible with the {@code accumulator} function; for all* {@code u} and {@code t}, the following must hold:* <pre>{@code* combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)* }</pre>** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote Many reductions using this form can be represented more simply* by an explicit combination of {@code map} and {@code reduce} operations.* The {@code accumulator} function acts as a fused mapper and accumulator,* which can sometimes be more efficient than separate mapping and reduction,* such as when knowing the previously reduced value allows you to avoid* some computation.** @param <U> The type of the result* @param identity the identity value for the combiner function* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for incorporating an additional element into a result* @param combiner an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values, which must be* compatible with the accumulator function* @return the result of the reduction* @see #reduce(BinaryOperator)* @see #reduce(Object, BinaryOperator)*/<U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner);/*** Performs a <a href="package-summary.html#MutableReduction">mutable* reduction</a> operation on the elements of this stream. A mutable* reduction is one in which the reduced value is a mutable result container,* such as an {@code ArrayList}, and elements are incorporated by updating* the state of the result rather than by replacing the result. This* produces a result equivalent to:* <pre>{@code* R result = supplier.get();* for (T element : this stream)* accumulator.accept(result, element);* return result;* }</pre>** <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations* can be parallelized without requiring additional synchronization.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote There are many existing classes in the JDK whose signatures are* well-suited for use with method references as arguments to {@code collect()}.* For example, the following will accumulate strings into an {@code ArrayList}:* <pre>{@code* List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,* ArrayList::addAll);* }</pre>** <p>The following will take a stream of strings and concatenates them into a* single string:* <pre>{@code* String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,* StringBuilder::append)* .toString();* }</pre>** @param <R> type of the result* @param supplier a function that creates a new result container. For a* parallel execution, this function may be called* multiple times and must return a fresh value each time.* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for incorporating an additional element into a result* @param combiner an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values, which must be* compatible with the accumulator function* @return the result of the reduction*/<R> R collect(Supplier<R> supplier,BiConsumer<R, ? super T> accumulator,BiConsumer<R, R> combiner);/*** Performs a <a href="package-summary.html#MutableReduction">mutable* reduction</a> operation on the elements of this stream using a* {@code Collector}. A {@code Collector}* encapsulates the functions used as arguments to* {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of* collection strategies and composition of collect operations such as* multiple-level grouping or partitioning.** <p>If the stream is parallel, and the {@code Collector}* is {@link Collector.Characteristics#CONCURRENT concurrent}, and* either the stream is unordered or the collector is* {@link Collector.Characteristics#UNORDERED unordered},* then a concurrent reduction will be performed (see {@link Collector} for* details on concurrent reduction.)** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** <p>When executed in parallel, multiple intermediate results may be* instantiated, populated, and merged so as to maintain isolation of* mutable data structures. Therefore, even when executed in parallel* with non-thread-safe data structures (such as {@code ArrayList}), no* additional synchronization is needed for a parallel reduction.** @apiNote* The following will accumulate strings into an ArrayList:* <pre>{@code* List<String> asList = stringStream.collect(Collectors.toList());* }</pre>** <p>The following will classify {@code Person} objects by city:* <pre>{@code* Map<String, List<Person>> peopleByCity* = personStream.collect(Collectors.groupingBy(Person::getCity));* }</pre>** <p>The following will classify {@code Person} objects by state and city,* cascading two {@code Collector}s together:* <pre>{@code* Map<String, Map<String, List<Person>>> peopleByStateAndCity* = personStream.collect(Collectors.groupingBy(Person::getState,* Collectors.groupingBy(Person::getCity)));* }</pre>** @param <R> the type of the result* @param <A> the intermediate accumulation type of the {@code Collector}* @param collector the {@code Collector} describing the reduction* @return the result of the reduction* @see #collect(Supplier, BiConsumer, BiConsumer)* @see Collectors*/<R, A> R collect(Collector<? super T, A, R> collector);/*** Returns the minimum element of this stream according to the provided* {@code Comparator}. This is a special case of a* <a href="package-summary.html#Reduction">reduction</a>.** <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.** @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* {@code Comparator} to compare elements of this stream* @return an {@code Optional} describing the minimum element of this stream,* or an empty {@code Optional} if the stream is empty* @throws NullPointerException if the minimum element is null*/Optional<T> min(Comparator<? super T> comparator);/*** Returns the maximum element of this stream according to the provided* {@code Comparator}. This is a special case of a* <a href="package-summary.html#Reduction">reduction</a>.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* {@code Comparator} to compare elements of this stream* @return an {@code Optional} describing the maximum element of this stream,* or an empty {@code Optional} if the stream is empty* @throws NullPointerException if the maximum element is null*/Optional<T> max(Comparator<? super T> comparator);/*** Returns the count of elements in this stream. This is a special case of* a <a href="package-summary.html#Reduction">reduction</a> and is* equivalent to:* <pre>{@code* return mapToLong(e -> 1L).sum();* }</pre>** <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.** @return the count of elements in this stream*/long count();/*** Returns whether any elements of this stream match the provided* predicate. May not evaluate the predicate on all elements if not* necessary for determining the result. If the stream is empty then* {@code false} is returned and the predicate is not evaluated.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @apiNote* This method evaluates the <em>existential quantification</em> of the* predicate over the elements of the stream (for some x P(x)).** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to elements of this stream* @return {@code true} if any elements of the stream match the provided* predicate, otherwise {@code false}*/boolean anyMatch(Predicate<? super T> predicate);/*** Returns whether all elements of this stream match the provided predicate.* May not evaluate the predicate on all elements if not necessary for* determining the result. If the stream is empty then {@code true} is* returned and the predicate is not evaluated.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @apiNote* This method evaluates the <em>universal quantification</em> of the* predicate over the elements of the stream (for all x P(x)). If the* stream is empty, the quantification is said to be <em>vacuously* satisfied</em> and is always {@code true} (regardless of P(x)).** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to elements of this stream* @return {@code true} if either all elements of the stream match the* provided predicate or the stream is empty, otherwise {@code false}*/boolean allMatch(Predicate<? super T> predicate);/*** Returns whether no elements of this stream match the provided predicate.* May not evaluate the predicate on all elements if not necessary for* determining the result. If the stream is empty then {@code true} is* returned and the predicate is not evaluated.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @apiNote* This method evaluates the <em>universal quantification</em> of the* negated predicate over the elements of the stream (for all x ~P(x)). If* the stream is empty, the quantification is said to be vacuously satisfied* and is always {@code true}, regardless of P(x).** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to elements of this stream* @return {@code true} if either no elements of the stream match the* provided predicate or the stream is empty, otherwise {@code false}*/boolean noneMatch(Predicate<? super T> predicate);/*** Returns an {@link Optional} describing the first element of this stream,* or an empty {@code Optional} if the stream is empty. If the stream has* no encounter order, then any element may be returned.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @return an {@code Optional} describing the first element of this stream,* or an empty {@code Optional} if the stream is empty* @throws NullPointerException if the element selected is null*/Optional<T> findFirst();/*** Returns an {@link Optional} describing some element of the stream, or an* empty {@code Optional} if the stream is empty.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** <p>The behavior of this operation is explicitly nondeterministic; it is* free to select any element in the stream. This is to allow for maximal* performance in parallel operations; the cost is that multiple invocations* on the same source may not return the same result. (If a stable result* is desired, use {@link #findFirst()} instead.)** @return an {@code Optional} describing some element of this stream, or an* empty {@code Optional} if the stream is empty* @throws NullPointerException if the element selected is null* @see #findFirst()*/Optional<T> findAny();// Static factories/*** Returns a builder for a {@code Stream}.** @param <T> type of elements* @return a stream builder*/public static<T> Builder<T> builder() {return new Streams.StreamBuilderImpl<>();}/*** Returns an empty sequential {@code Stream}.** @param <T> the type of stream elements* @return an empty sequential stream*/public static<T> Stream<T> empty() {return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);}/*** Returns a sequential {@code Stream} containing a single element.** @param t the single element* @param <T> the type of stream elements* @return a singleton sequential stream*/public static<T> Stream<T> of(T t) {return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);}/*** Returns a sequential ordered stream whose elements are the specified values.** @param <T> the type of stream elements* @param values the elements of the new stream* @return the new stream*/@SafeVarargs@SuppressWarnings("varargs") // Creating a stream from an array is safepublic static<T> Stream<T> of(T... values) {return Arrays.stream(values);}/*** Returns an infinite sequential ordered {@code Stream} produced by iterative* application of a function {@code f} to an initial element {@code seed},* producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},* {@code f(f(seed))}, etc.** <p>The first element (position {@code 0}) in the {@code Stream} will be* the provided {@code seed}. For {@code n > 0}, the element at position* {@code n}, will be the result of applying the function {@code f} to the* element at position {@code n - 1}.** @param <T> the type of stream elements* @param seed the initial element* @param f a function to be applied to to the previous element to produce* a new element* @return a new sequential {@code Stream}*/public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {Objects.requireNonNull(f);final Iterator<T> iterator = new Iterator<T>() {@SuppressWarnings("unchecked")T t = (T) Streams.NONE;@Overridepublic boolean hasNext() {return true;}@Overridepublic T next() {return t = (t == Streams.NONE) ? seed : f.apply(t);}};return StreamSupport.stream(Spliterators.spliteratorUnknownSize(iterator,Spliterator.ORDERED | Spliterator.IMMUTABLE), false);}/*** Returns an infinite sequential unordered stream where each element is* generated by the provided {@code Supplier}. This is suitable for* generating constant streams, streams of random elements, etc.** @param <T> the type of stream elements* @param s the {@code Supplier} of generated elements* @return a new infinite sequential unordered {@code Stream}*/public static<T> Stream<T> generate(Supplier<T> s) {Objects.requireNonNull(s);return StreamSupport.stream(new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false);}/*** Creates a lazily concatenated stream whose elements are all the* elements of the first stream followed by all the elements of the* second stream. The resulting stream is ordered if both* of the input streams are ordered, and parallel if either of the input* streams is parallel. When the resulting stream is closed, the close* handlers for both input streams are invoked.** @implNote* Use caution when constructing streams from repeated concatenation.* Accessing an element of a deeply concatenated stream can result in deep* call chains, or even {@code StackOverflowException}.** @param <T> The type of stream elements* @param a the first stream* @param b the second stream* @return the concatenation of the two input streams*/public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {Objects.requireNonNull(a);Objects.requireNonNull(b);@SuppressWarnings("unchecked")Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>((Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());return stream.onClose(Streams.composedClose(a, b));}/*** A mutable builder for a {@code Stream}. This allows the creation of a* {@code Stream} by generating elements individually and adding them to the* {@code Builder} (without the copying overhead that comes from using* an {@code ArrayList} as a temporary buffer.)** <p>A stream builder has a lifecycle, which starts in a building* phase, during which elements can be added, and then transitions to a built* phase, after which elements may not be added. The built phase begins* when the {@link #build()} method is called, which creates an ordered* {@code Stream} whose elements are the elements that were added to the stream* builder, in the order they were added.** @param <T> the type of stream elements* @see Stream#builder()* @since 1.8*/public interface Builder<T> extends Consumer<T> {/*** Adds an element to the stream being built.** @throws IllegalStateException if the builder has already transitioned to* the built state*/@Overridevoid accept(T t);/*** Adds an element to the stream being built.** @implSpec* The default implementation behaves as if:* <pre>{@code* accept(t)* return this;* }</pre>** @param t the element to add* @return {@code this} builder* @throws IllegalStateException if the builder has already transitioned to* the built state*/default Builder<T> add(T t) {accept(t);return this;}/*** Builds the stream, transitioning this builder to the built state.* An {@code IllegalStateException} is thrown if there are further attempts* to operate on the builder after it has entered the built state.** @return the built stream* @throws IllegalStateException if the builder has already transitioned to* the built state*/Stream<T> build();}}
只是,這接口中定義的參數(shù),都是些經(jīng)過特殊定義的接口,即函數(shù)式接口,即默認(rèn)只需實現(xiàn)一個方法即可接口類定義。
3. stream包的具體實現(xiàn)?
如上一節(jié),我們已知stream中主要依賴于許多的接口定義。既然是接口,那就必然無法直接調(diào)用,須要有與之對應(yīng)的實現(xiàn)方可調(diào)用。所以,我們需要有特定的場景,才可以來談stream 的實現(xiàn)問題。
所以,我們先以相對簡單的 Integer 的流轉(zhuǎn)化與處理過程,一探stream究竟。
// java.util.Arrays#stream(T[])/*** Returns a sequential {@link Stream} with the specified array as its* source.** @param <T> The type of the array elements* @param array The array, assumed to be unmodified during use* @return a {@code Stream} for the array* @since 1.8*/public static <T> Stream<T> stream(T[] array) {return stream(array, 0, array.length);}// java.util.Arrays#stream(T[], int, int)/*** Returns a sequential {@link Stream} with the specified range of the* specified array as its source.** @param <T> the type of the array elements* @param array the array, assumed to be unmodified during use* @param startInclusive the first index to cover, inclusive* @param endExclusive index immediately past the last index to cover* @return a {@code Stream} for the array range* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is* negative, {@code endExclusive} is less than* {@code startInclusive}, or {@code endExclusive} is greater than* the array size* @since 1.8*/public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) {// 構(gòu)造 iterator, 帶入 StreamSupport 中return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false);}/*** Returns a {@link Spliterator} covering the specified range of the* specified array.** <p>The spliterator reports {@link Spliterator#SIZED},* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and* {@link Spliterator#IMMUTABLE}.** @param <T> type of elements* @param array the array, assumed to be unmodified during use* @param startInclusive the first index to cover, inclusive* @param endExclusive index immediately past the last index to cover* @return a spliterator for the array elements* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is* negative, {@code endExclusive} is less than* {@code startInclusive}, or {@code endExclusive} is greater than* the array size* @since 1.8*/public static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive) {return Spliterators.spliterator(array, startInclusive, endExclusive,Spliterator.ORDERED | Spliterator.IMMUTABLE);}// java.util.stream.StreamSupport#stream(java.util.Spliterator<T>, boolean)/*** Creates a new sequential or parallel {@code Stream} from a* {@code Spliterator}.** <p>The spliterator is only traversed, split, or queried for estimated* size after the terminal operation of the stream pipeline commences.** <p>It is strongly recommended the spliterator report a characteristic of* {@code IMMUTABLE} or {@code CONCURRENT}, or be* <a href="../Spliterator.html#binding">late-binding</a>. Otherwise,* {@link #stream(java.util.function.Supplier, int, boolean)} should be used* to reduce the scope of potential interference with the source. See* <a href="package-summary.html#NonInterference">Non-Interference</a> for* more details.** @param <T> the type of stream elements* @param spliterator a {@code Spliterator} describing the stream elements* @param parallel if {@code true} then the returned stream is a parallel* stream; if {@code false} the returned stream is a sequential* stream.* @return a new sequential or parallel {@code Stream}*/public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {Objects.requireNonNull(spliterator);return new ReferencePipeline.Head<>(spliterator,StreamOpFlag.fromCharacteristics(spliterator),parallel);}// java.util.stream.ReferencePipeline.Head#Head(java.util.Spliterator<?>, int, boolean)/*** Constructor for the source stage of a Stream.** @param source {@code Spliterator} describing the stream source* @param sourceFlags the source flags for the stream source, described* in {@link StreamOpFlag}*/Head(Spliterator<?> source,int sourceFlags, boolean parallel) {super(source, sourceFlags, parallel);}// java.util.stream.ReferencePipeline#ReferencePipeline(java.util.Spliterator<?>, int, boolean)/*** Constructor for the head of a stream pipeline.** @param source {@code Spliterator} describing the stream source* @param sourceFlags The source flags for the stream source, described in* {@link StreamOpFlag}* @param parallel {@code true} if the pipeline is parallel*/ReferencePipeline(Spliterator<?> source,int sourceFlags, boolean parallel) {super(source, sourceFlags, parallel);}// java.util.stream.AbstractPipeline#AbstractPipeline(java.util.Spliterator<?>, int, boolean)/*** Constructor for the head of a stream pipeline.** @param source {@code Spliterator} describing the stream source* @param sourceFlags the source flags for the stream source, described in* {@link StreamOpFlag}* @param parallel {@code true} if the pipeline is parallel*/AbstractPipeline(Spliterator<?> source,int sourceFlags, boolean parallel) {this.previousStage = null;this.sourceSpliterator = source;this.sourceStage = this;this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;// The following is an optimization of:// StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;this.depth = 0;this.parallel = parallel;}如上,就返回了一 Stream 的具體實例,即是 ReferencePipeline.Head 的實例。故而,之后的每個stream操作如 filter,map,foreach方法,都盡在該 head 中進行實現(xiàn)了。一瞅便知。// java.util.stream.ReferencePipeline#filter@Overridepublic final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {Objects.requireNonNull(predicate);// 只返回了一個 StreamlessOp實例return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,StreamOpFlag.NOT_SIZED) {@OverrideSink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {return new Sink.ChainedReference<P_OUT, P_OUT>(sink) {@Overridepublic void begin(long size) {downstream.begin(-1);}@Overridepublic void accept(P_OUT u) {// 在必要時候調(diào)用 test() 方法即可// 當(dāng)test返回 true 時,該元素被保留傳入下一級調(diào)用中,此即filter的語義if (predicate.test(u))downstream.accept(u);}};}};}// java.util.stream.ReferencePipeline#map@Override@SuppressWarnings("unchecked")public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {Objects.requireNonNull(mapper);// 同樣,僅返回一個 StatelessOp 的實例return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {@OverrideSink<P_OUT> opWrapSink(int flags, Sink<R> sink) {return new Sink.ChainedReference<P_OUT, R>(sink) {@Overridepublic void accept(P_OUT u) {// 同樣,在必要的時候調(diào)用 apply 方法// 即 map 的語義為 每個元素都會調(diào)用該方法downstream.accept(mapper.apply(u));}};}};}@Overridepublic final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) {Objects.requireNonNull(mapper);// We can do better than this, by polling cancellationRequested when stream is infinitereturn new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {@OverrideSink<P_OUT> opWrapSink(int flags, Sink<R> sink) {return new Sink.ChainedReference<P_OUT, R>(sink) {@Overridepublic void begin(long size) {downstream.begin(-1);}@Overridepublic void accept(P_OUT u) {// flatmap 語義,所得結(jié)果,依次往下傳輸try (Stream<? extends R> result = mapper.apply(u)) {// We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach itif (result != null)result.sequential().forEach(downstream);}}};}};}
如上,幾個方法調(diào)用下來,我們基本都可以看到,都是一個個的 StatelessOp 的實例的返回,但都沒有觸發(fā)真正的計算。那么,真正計算又要到幾時呢?相信有些其他知識面的你,定然會想到,在合適的時候再來觸發(fā)真正的運算操作。當(dāng)數(shù)據(jù)結(jié)構(gòu)不會發(fā)生本質(zhì)的變化時,這種平衡就是存在的。只是在一些關(guān)鍵時候,才會觸發(fā)運算。這為后續(xù)進行并行計算或者性能優(yōu)化提供了可能。
那么,stream包中,哪些運算是作為真正的觸發(fā)行為呢?至少 collect(), foreach(), reduce() 是會進行觸發(fā)的。這些優(yōu)化手段,不知和其他框架實現(xiàn),誰先誰后,誰主誰從。反正,總是好的想法。在其他地方,也許叫許多算子。
我們以collect()探查如何使用這stream的威力?
// java.util.stream.ReferencePipeline#collect(java.util.stream.Collector<? super P_OUT,A,R>)@Override@SuppressWarnings("unchecked")public final <R, A> R collect(Collector<? super P_OUT, A, R> collector) {A container;// 即分并行與串行if (isParallel()&& (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))&& (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {container = collector.supplier().get();BiConsumer<A, ? super P_OUT> accumulator = collector.accumulator();forEach(u -> accumulator.accept(container, u));}else {// 串行執(zhí)行container = evaluate(ReduceOps.makeRef(collector));}return collector.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)? (R) container: collector.finisher().apply(container);}/*** Constructs a {@code TerminalOp} that implements a mutable reduce on* reference values.** @param <T> the type of the input elements* @param <I> the type of the intermediate reduction result* @param collector a {@code Collector} defining the reduction* @return a {@code ReduceOp} implementing the reduction*/public static <T, I> TerminalOp<T, I>makeRef(Collector<? super T, I, ?> collector) {Supplier<I> supplier = Objects.requireNonNull(collector).supplier();BiConsumer<I, ? super T> accumulator = collector.accumulator();BinaryOperator<I> combiner = collector.combiner();class ReducingSink extends Box<I>implements AccumulatingSink<T, I, ReducingSink> {@Overridepublic void begin(long size) {state = supplier.get();}@Overridepublic void accept(T t) {accumulator.accept(state, t);}@Overridepublic void combine(ReducingSink other) {state = combiner.apply(state, other.state);}}// 返回ReuceOpreturn new ReduceOp<T, I, ReducingSink>(StreamShape.REFERENCE) {@Overridepublic ReducingSink makeSink() {return new ReducingSink();}@Overridepublic int getOpFlags() {return collector.characteristics().contains(Collector.Characteristics.UNORDERED)? StreamOpFlag.NOT_ORDERED: 0;}};}// 運算一系列任務(wù)/*** Evaluate the pipeline with a terminal operation to produce a result.** @param <R> the type of result* @param terminalOp the terminal operation to be applied to the pipeline.* @return the result*/final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {assert getOutputShape() == terminalOp.inputShape();if (linkedOrConsumed)throw new IllegalStateException(MSG_STREAM_LINKED);linkedOrConsumed = true;return isParallel()? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags())): terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));}// java.util.stream.ReduceOps.ReduceOp#evaluateSequential@Overridepublic <P_IN> R evaluateSequential(PipelineHelper<T> helper,Spliterator<P_IN> spliterator) {return helper.wrapAndCopyInto(makeSink(), spliterator).get();}// java.util.stream.AbstractPipeline#wrapAndCopyInto@Overridefinal <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);return sink;}// java.util.stream.AbstractPipeline#wrapSink@Override@SuppressWarnings("unchecked")final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {Objects.requireNonNull(sink);// 基本是按照倒序來排的for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {// 一層層包裝算子sink = p.opWrapSink(p.previousStage.combinedFlags, sink);}return (Sink<P_IN>) sink;}// java.util.stream.AbstractPipeline#copyInto@Overridefinal <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {Objects.requireNonNull(wrappedSink);// 依次調(diào)用 begin, foreach, end 方法if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {wrappedSink.begin(spliterator.getExactSizeIfKnown());// 每個元素依次迭代, 一層層退出來spliterator.forEachRemaining(wrappedSink);wrappedSink.end();}else {copyIntoWithCancel(wrappedSink, spliterator);}}// java.util.Spliterators.ArraySpliterator#forEachRemaining@SuppressWarnings("unchecked")@Overridepublic void forEachRemaining(Consumer<? super T> action) {Object[] a; int i, hi; // hoist accesses and checks from loopif (action == null)throw new NullPointerException();if ((a = array).length >= (hi = fence) &&(i = index) >= 0 && i < (index = hi)) {do { action.accept((T)a[i]); } while (++i < hi);}}
可見,該stream包的實現(xiàn)中,大量使用了包裝器模式,責(zé)任鏈模式,模板方法模式,以及在必要的節(jié)點再進行統(tǒng)一的運算觸發(fā)。且在必要的時候開啟并行計算,為上層應(yīng)用帶了各種可能。在使用起來極其簡單的同時,又兼顧了性能。(我說的不是通常的性能,比如我自己寫幾個簡單的filter豈不性能更好?)而以上,僅僅是 stream 中的一種實現(xiàn),針對每個不同類型的數(shù)據(jù),其處理方式自然不一樣。比如 IntStream, DoubleStream, LongStream 雖同為Stream,但特性都都不一樣,不能一概而論。當(dāng)然,一般這些實現(xiàn)都會遵守一定的接口規(guī)范。
其中,以上這些簡便的寫法,得益于lamda語法的支持,以及幾個簡單的函數(shù)式接口定義。比如 Consumer, Function... 它們都被定義在java.util.function包下面。
@FunctionalInterfacepublic interface Consumer<T> {/*** Performs this operation on the given argument.** @param t the input argument*/void accept(T t);/*** Returns a composed {@code Consumer} that performs, in sequence, this* operation followed by the {@code after} operation. If performing either* operation throws an exception, it is relayed to the caller of the* composed operation. If performing this operation throws an exception,* the {@code after} operation will not be performed.** @param after the operation to perform after this operation* @return a composed {@code Consumer} that performs in sequence this* operation followed by the {@code after} operation* @throws NullPointerException if {@code after} is null*/default Consumer<T> andThen(Consumer<? super T> after) {Objects.requireNonNull(after);return (T t) -> { accept(t); after.accept(t); };}}@FunctionalInterfacepublic interface Function<T, R> {/*** Applies this function to the given argument.** @param t the function argument* @return the function result*/R apply(T t);/*** Returns a composed function that first applies the {@code before}* function to its input, and then applies this function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of input to the {@code before} function, and to the* composed function* @param before the function to apply before this function is applied* @return a composed function that first applies the {@code before}* function and then applies this function* @throws NullPointerException if before is null** @see #andThen(Function)*/default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {Objects.requireNonNull(before);return (V v) -> apply(before.apply(v));}/*** Returns a composed function that first applies this function to* its input, and then applies the {@code after} function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of output of the {@code after} function, and of the* composed function* @param after the function to apply after this function is applied* @return a composed function that first applies this function and then* applies the {@code after} function* @throws NullPointerException if after is null** @see #compose(Function)*/default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {Objects.requireNonNull(after);return (T t) -> after.apply(apply(t));}/*** Returns a function that always returns its input argument.** @param <T> the type of the input and output objects to the function* @return a function that always returns its input argument*/static <T> Function<T, T> identity() {return t -> t;}}@FunctionalInterfacepublic interface Supplier<T> {/*** Gets a result.** @return a result*/T get();}
話說為何單叫l(wèi)amda式寫法又叫作函數(shù)式編程?想來原因有二,一是調(diào)用手法像是函數(shù)一般,只須傳入?yún)?shù)即可調(diào)用,二來lamda實現(xiàn)方式為生出靜態(tài)函數(shù)調(diào)用而成。不知是也不是。

騰訊、阿里、滴滴后臺面試題匯總總結(jié) — (含答案)
面試:史上最全多線程面試題 !
最新阿里內(nèi)推Java后端面試題
JVM難學(xué)?那是因為你沒認(rèn)真看完這篇文章

關(guān)注作者微信公眾號 —《JAVA爛豬皮》
了解更多java后端架構(gòu)知識以及最新面試寶典


看完本文記得給作者點贊+在看哦~~~大家的支持,是作者源源不斷出文的動力
作者:等你歸去來
出處:https://www.cnblogs.com/yougewe/p/14879246.html
