<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          論文/代碼速遞2022.10.13!

          共 2920字,需瀏覽 6分鐘

           ·

          2022-10-15 08:37


          強烈推薦:2000核時免費領(lǐng),立刻開啟云上高性能計算 ?,注冊即送200元計算資源,https://www.bkunyun.com/wap/console?source=bkykolaistudy
          當(dāng)服務(wù)器有可視化界面,直接起飛!

          整理:AI算法與圖像處理
          CVPR2022論文和代碼整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo
          ECCV2022論文和代碼整理:https://github.com/DWCTOD/ECCV2022-Papers-with-Code-Demo
          歡迎關(guān)注公眾號 AI算法與圖像處理,獲取更多干貨:


          大家好,  最近正在優(yōu)化每周分享的CVPR$ECCV 2022論文, 目前考慮按照不同類別去分類,方便不同方向的小伙伴挑選自己感興趣的論文哈
          歡迎大家留言其他想法,  合適的話會采納哈! 求個三連支持一波哈

          建了一個知識星球,計劃不定期分享最新的成果和資源!感興趣可以掃描體驗,另外還有50個一年免費體驗名額,可以添加微信nvshenj125 申請。

          最新成果demo展示:

          主頁:https://sgvr.kaist.ac.kr/publication/flow-supervisor/ 代碼:https://github.com/iwbn/flow-supervisor

           光流CNN的訓(xùn)練管道由合成數(shù)據(jù)集的預(yù)訓(xùn)練階段和目標(biāo)數(shù)據(jù)集的微調(diào)階段組成。然而,從目標(biāo)視頻中獲取ground truth 流需要付出巨大的努力。本文提出了一種實用的微調(diào)方法,以使預(yù)處理模型適應(yīng)沒有g(shù)round truth 流的目標(biāo)數(shù)據(jù)集,這種方法尚未得到廣泛的探索。具體來說,我們提出了一個用于自監(jiān)督的流監(jiān)督,它由參數(shù)分離和學(xué)生輸出連接組成。這種設(shè)計的目的是穩(wěn)定收斂,并比在微調(diào)任務(wù)中不穩(wěn)定的傳統(tǒng)自監(jiān)督方法具有更好的精度。實驗結(jié)果表明,與不同的自監(jiān)督方法相比,該方法對于半監(jiān)督學(xué)習(xí)是有效的。此外,通過利用額外的未標(biāo)記數(shù)據(jù)集,我們在Sintel和KITTI基準(zhǔn)上對最先進(jìn)的光流模型進(jìn)行了有意義的改進(jìn)


          最新論文整理


             ECCV2022

          Updated on : 13 Oct 2022

          total number : 1

          DeepMend: Learning Occupancy Functions to Represent Shape for Repair

          • 論文/Paper: http://arxiv.org/pdf/2210.05728

          • 代碼/Code: https://github.com/terascale-all-sensing-research-studio/deepmend


              CVPR2022

             NeurIPS

          Updated on : 13 Oct 2022

          total number : 11

          AniFaceGAN: Animatable 3D-Aware Face Image Generation for Video Avatars

          • 論文/Paper: http://arxiv.org/pdf/2210.06465

          • 代碼/Code: None

          Learning Multi-resolution Functional Maps with Spectral Attention for Robust Shape Matching

          • 論文/Paper: http://arxiv.org/pdf/2210.06373

          • 代碼/Code: https://github.com/craigleili/AttentiveFMaps

          Latency-aware Spatial-wise Dynamic Networks

          • 論文/Paper: http://arxiv.org/pdf/2210.06223

          • 代碼/Code: https://github.com/leaplabthu/lasnet

          Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning

          • 論文/Paper: http://arxiv.org/pdf/2210.06044

          • 代碼/Code: None

          Long-Form Video-Language Pre-Training with Multimodal Temporal Contrastive Learning

          • 論文/Paper: http://arxiv.org/pdf/2210.06031

          • 代碼/Code: https://github.com/microsoft/XPretrain.

          Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation

          • 論文/Paper: http://arxiv.org/pdf/2210.05968

          • 代碼/Code: https://github.com/sclbd/transfer_attack_rap

          Decomposed Knowledge Distillation for Class-Incremental Semantic Segmentation

          • 論文/Paper: http://arxiv.org/pdf/2210.05941

          • 代碼/Code: None

          A Lower Bound of Hash Codes' Performance

          • 論文/Paper: http://arxiv.org/pdf/2210.05899

          • 代碼/Code: https://github.com/vl-group/lbhash

          SegViT: Semantic Segmentation with Plain Vision Transformers

          • 論文/Paper: http://arxiv.org/pdf/2210.05844

          • 代碼/Code: None

          Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork

          • 論文/Paper: http://arxiv.org/pdf/2210.06428

          • 代碼/Code: https://github.com/VITA-Group/Trap-and-Replace-Backdoor-Defense

          Towards Theoretically Inspired Neural Initialization Optimization

          • 論文/Paper: http://arxiv.org/pdf/2210.05956

          • 代碼/Code: https://github.com/HarborYuan/GradCosine


          瀏覽 90
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  免费性爱网址 | 一区 激情 自拍 豆花 | 天天天天澡日日日日澡无码 | 99热这里只有精品3 | 精品国自产拍在线观看 |