<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          京東二面:內(nèi)存耗盡后Redis會(huì)發(fā)生什么?

          共 4548字,需瀏覽 10分鐘

           ·

          2021-11-15 18:02

          點(diǎn)擊關(guān)注公眾號(hào),Java干貨及時(shí)送達(dá)

          牛逼!又發(fā)現(xiàn)了一款面試題庫(kù),太全了??!

          點(diǎn)擊查看

          來(lái)源:cnblogs.com/lonely-wolf/p/14403264.html

          # 前言


          作為一臺(tái)服務(wù)器來(lái)說(shuō),內(nèi)存并不是無(wú)限的,所以總會(huì)存在內(nèi)存耗盡的情況,那么當(dāng) Redis 服務(wù)器的內(nèi)存耗盡后,如果繼續(xù)執(zhí)行請(qǐng)求命令,Redis 會(huì)如何處理呢?

          # 內(nèi)存回收


          使用Redis 服務(wù)時(shí),很多情況下某些鍵值對(duì)只會(huì)在特定的時(shí)間內(nèi)有效,為了防止這種類(lèi)型的數(shù)據(jù)一直占有內(nèi)存,我們可以給鍵值對(duì)設(shè)置有效期。Redis 中可以通過(guò) 4 個(gè)獨(dú)立的命令來(lái)給一個(gè)鍵設(shè)置過(guò)期時(shí)間:

          • expire key ttl:將 key 值的過(guò)期時(shí)間設(shè)置為 ttl 秒。

          • pexpire key ttl:將 key 值的過(guò)期時(shí)間設(shè)置為 ttl 毫秒。

          • expireat key timestamp:將 key 值的過(guò)期時(shí)間設(shè)置為指定的 timestamp 秒數(shù)。

          • pexpireat key timestamp:將 key 值的過(guò)期時(shí)間設(shè)置為指定的 timestamp 毫秒數(shù)。


          PS:不管使用哪一個(gè)命令,最終 Redis 底層都是使用 pexpireat 命令來(lái)實(shí)現(xiàn)的。
          另外,set 等命令也可以設(shè)置 key 的同時(shí)加上過(guò)期時(shí)間,這樣可以保證設(shè)值和設(shè)過(guò)期時(shí)間的原子性。

          設(shè)置了有效期后,可以通過(guò) ttl 和 pttl 兩個(gè)命令來(lái)查詢剩余過(guò)期時(shí)間(如果未設(shè)置過(guò)期時(shí)間則下面兩個(gè)命令返回?-1,如果設(shè)置了一個(gè)非法的過(guò)期時(shí)間,則都返回?-2):

          • ttl key 返回 key 剩余過(guò)期秒數(shù)。

          • pttl key 返回 key 剩余過(guò)期的毫秒數(shù)。

          # 過(guò)期策略


          如果將一個(gè)過(guò)期的鍵刪除,我們一般都會(huì)有三種策略:

          • 定時(shí)刪除:為每個(gè)鍵設(shè)置一個(gè)定時(shí)器,一旦過(guò)期時(shí)間到了,則將鍵刪除。這種策略對(duì)內(nèi)存很友好,但是對(duì) CPU 不友好,因?yàn)槊總€(gè)定時(shí)器都會(huì)占用一定的 CPU 資源。


          • 惰性刪除:不管鍵有沒(méi)有過(guò)期都不主動(dòng)刪除,等到每次去獲取鍵時(shí)再判斷是否過(guò)期,如果過(guò)期就刪除該鍵,否則返回鍵對(duì)應(yīng)的值。這種策略對(duì)內(nèi)存不夠友好,可能會(huì)浪費(fèi)很多內(nèi)存。


          • 定期掃描:系統(tǒng)每隔一段時(shí)間就定期掃描一次,發(fā)現(xiàn)過(guò)期的鍵就進(jìn)行刪除。這種策略相對(duì)來(lái)說(shuō)是上面兩種策略的折中方案,需要注意的是這個(gè)定期的頻率要結(jié)合實(shí)際情況掌控好,使用這種方案有一個(gè)缺陷就是可能會(huì)出現(xiàn)已經(jīng)過(guò)期的鍵也被返回。


          在 Redis 當(dāng)中,其選擇的是策略 2 和策略 3 的綜合使用。不過(guò) Redis 的定期掃描只會(huì)掃描設(shè)置了過(guò)期時(shí)間的鍵,因?yàn)樵O(shè)置了過(guò)期時(shí)間的鍵 Redis 會(huì)單獨(dú)存儲(chǔ),所以不會(huì)出現(xiàn)掃描所有鍵的情況:
          typedef struct redisDb { dict *dict; //所有的鍵值對(duì) dict *expires; //設(shè)置了過(guò)期時(shí)間的鍵值對(duì) dict *blocking_keys; //被阻塞的key,如客戶端執(zhí)行BLPOP等阻塞指令時(shí) dict *watched_keys; //WATCHED keys int id; //Database ID //... 省略了其他屬性} redisDb;

          # 8 種淘汰策略


          假如 Redis 當(dāng)中所有的鍵都沒(méi)有過(guò)期,而且此時(shí)內(nèi)存滿了,那么客戶端繼續(xù)執(zhí)行 set 等命令時(shí) Redis 會(huì)怎么處理呢?Redis 當(dāng)中提供了不同的淘汰策略來(lái)處理這種場(chǎng)景。

          首先 Redis 提供了一個(gè)參數(shù) maxmemory 來(lái)配置 Redis 最大使用內(nèi)存:
          maxmemory <bytes>

          或者也可以通過(guò)命令 config set maxmemory 1GB 來(lái)動(dòng)態(tài)修改。

          如果沒(méi)有設(shè)置該參數(shù),那么在 32 位的操作系統(tǒng)中 Redis 最多使用 3GB 內(nèi)存,而在 64 位的操作系統(tǒng)中則不作限制。

          Redis 中提供了 8 種淘汰策略,可以通過(guò)參數(shù) maxmemory-policy 進(jìn)行配置:

          PS:淘汰策略也可以直接使用命令 config set maxmemory-policy <策略>?來(lái)進(jìn)行動(dòng)態(tài)配置。

          # LRU 算法


          LRU 全稱為:Least Recently Used。即:最近最長(zhǎng)時(shí)間未被使用。這個(gè)主要針對(duì)的是使用時(shí)間。

          Redis 改進(jìn)后的 LRU 算法


          在 Redis 當(dāng)中,并沒(méi)有采用傳統(tǒng)的 LRU 算法,因?yàn)閭鹘y(tǒng)的 LRU 算法存在 2 個(gè)問(wèn)題:

          • 需要額外的空間進(jìn)行存儲(chǔ)。

          • 可能存在某些 key 值使用很頻繁,但是最近沒(méi)被使用,從而被 LRU 算法刪除。


          為了避免以上 2 個(gè)問(wèn)題,Redis 當(dāng)中對(duì)傳統(tǒng)的 LRU 算法進(jìn)行了改造,通過(guò)抽樣的方式進(jìn)行刪除。

          配置文件中提供了一個(gè)屬性 maxmemory_samples 5,默認(rèn)值就是 5,表示隨機(jī)抽取 5 個(gè) key 值,然后對(duì)這 5 個(gè) key 值按照 LRU 算法進(jìn)行刪除,所以很明顯,key 值越大,刪除的準(zhǔn)確度越高。

          對(duì)抽樣 LRU 算法和傳統(tǒng)的 LRU 算法,Redis 官網(wǎng)當(dāng)中有一個(gè)對(duì)比圖:

          • 淺灰色帶是被刪除的對(duì)象。

          • 灰色帶是未被刪除的對(duì)象。

          • 綠色是添加的對(duì)象。


          左上角第一幅圖代表的是傳統(tǒng) LRU 算法,可以看到,當(dāng)抽樣數(shù)達(dá)到 10?個(gè)(右上角),已經(jīng)和傳統(tǒng)的 LRU 算法非常接近了。

          Redis 如何管理熱度數(shù)據(jù)


          前面我們講述字符串對(duì)象時(shí),提到了 redisObject 對(duì)象中存在一個(gè) lru 屬性:
          typedef struct redisObject { unsigned type:4;//對(duì)象類(lèi)型(4位=0.5字節(jié)) unsigned encoding:4;//編碼(4位=0.5字節(jié)) unsigned lru:LRU_BITS;//記錄對(duì)象最后一次被應(yīng)用程序訪問(wèn)的時(shí)間(24位=3字節(jié)) int refcount;//引用計(jì)數(shù)。等于0時(shí)表示可以被垃圾回收(32位=4字節(jié)) void *ptr;//指向底層實(shí)際的數(shù)據(jù)存儲(chǔ)結(jié)構(gòu),如:SDS等(8字節(jié))} robj;

          lru 屬性是創(chuàng)建對(duì)象的時(shí)候?qū)懭?,?duì)象被訪問(wèn)到時(shí)也會(huì)進(jìn)行更新。正常人的思路就是最后決定要不要?jiǎng)h除某一個(gè)鍵肯定是用當(dāng)前時(shí)間戳減去 lru,差值最大的就優(yōu)先被刪除。但是 Redis 里面并不是這么做的,Redis 中維護(hù)了一個(gè)全局屬性 lru_clock,這個(gè)屬性是通過(guò)一個(gè)全局函數(shù) serverCron 每隔 100?毫秒執(zhí)行一次來(lái)更新的,記錄的是當(dāng)前 unix 時(shí)間戳。

          最后決定刪除的數(shù)據(jù)是通過(guò) lru_clock 減去對(duì)象的 lru 屬性而得出的。那么為什么 Redis 要這么做呢?直接取全局時(shí)間不是更準(zhǔn)確嗎?

          這是因?yàn)檫@么做可以避免每次更新對(duì)象的 lru 屬性的時(shí)候可以直接取全局屬性,而不需要去調(diào)用系統(tǒng)函數(shù)來(lái)獲取系統(tǒng)時(shí)間,從而提升效率(Redis 當(dāng)中有很多這種細(xì)節(jié)考慮來(lái)提升性能,可以說(shuō)是對(duì)性能盡可能的優(yōu)化到極致)。

          不過(guò)這里還有一個(gè)問(wèn)題,我們看到,redisObject 對(duì)象中的 lru 屬性只有 24 位,24 位只能存儲(chǔ) 194 天的時(shí)間戳大小,一旦超過(guò) 194 天之后就會(huì)重新從?0?開(kāi)始計(jì)算,所以這時(shí)候就可能會(huì)出現(xiàn) redisObject 對(duì)象中的 lru 屬性大于全局的 lru_clock 屬性的情況。

          正因?yàn)槿绱?,所以?jì)算的時(shí)候也需要分為 2 種情況:

          • 當(dāng)全局 lruclock > lru,則使用 lruclock - lru 得到空閑時(shí)間。

          • 當(dāng)全局 lruclock < lru,則使用 lruclock_max(即 194 天) - lru + lruclock 得到空閑時(shí)間。


          需要注意的是,這種計(jì)算方式并不能保證抽樣的數(shù)據(jù)中一定能刪除空閑時(shí)間最長(zhǎng)的。這是因?yàn)槭紫瘸^(guò) 194 天還不被使用的情況很少,再次有 lruclock 第 2 輪繼續(xù)超過(guò) lru 屬性時(shí),計(jì)算才會(huì)出問(wèn)題。

          比如對(duì)象 A 記錄的 lru 是 1 天,而 lruclock 第二輪都到 10?天了,這時(shí)候就會(huì)導(dǎo)致計(jì)算結(jié)果只有 10-1=9 天,實(shí)際上應(yīng)該是 194+10-1=203 天。但是這種情況可以說(shuō)又是更少發(fā)生,所以說(shuō)這種處理方式是可能存在刪除不準(zhǔn)確的情況,但是本身這種算法就是一種近似的算法,所以并不會(huì)有太大影響。

          # LFU 算法


          LFU 全稱為:Least Frequently Used。即:最近最少頻率使用,這個(gè)主要針對(duì)的是使用頻率。這個(gè)屬性也是記錄在redisObject 中的 lru 屬性內(nèi)。

          當(dāng)我們采用 LFU 回收策略時(shí),lru 屬性的高 16 位用來(lái)記錄訪問(wèn)時(shí)間(last decrement time:ldt,單位為分鐘),低 8 位用來(lái)記錄訪問(wèn)頻率(logistic counter:logc),簡(jiǎn)稱 counter。

          訪問(wèn)頻次遞增


          LFU 計(jì)數(shù)器每個(gè)鍵只有 8 位,它能表示的最大值是 255,所以 Redis 使用的是一種基于概率的對(duì)數(shù)器來(lái)實(shí)現(xiàn) counter 的遞增。r

          給定一個(gè)舊的訪問(wèn)頻次,當(dāng)一個(gè)鍵被訪問(wèn)時(shí),counter 按以下方式遞增:

          1. 提取?0?和 1 之間的隨機(jī)數(shù) R。

          2. counter - 初始值(默認(rèn)為 5),得到一個(gè)基礎(chǔ)差值,如果這個(gè)差值小于?0,則直接取?0,為了方便計(jì)算,把這個(gè)差值記為 baseval。

          3. 概率 P 計(jì)算公式為:1/(baseval * lfu_log_factor + 1)。

          4. 如果 R < P 時(shí),頻次進(jìn)行遞增(counter++)。


          公式中的 lfu_log_factor 稱之為對(duì)數(shù)因子,默認(rèn)是 10?,可以通過(guò)參數(shù)來(lái)進(jìn)行控制:
          lfu_log_factor 10

          下圖就是對(duì)數(shù)因子 lfu_log_factor 和頻次 counter 增長(zhǎng)的關(guān)系圖:

          可以看到,當(dāng)對(duì)數(shù)因子 lfu_log_factor 為 100?時(shí),大概是 10M(1000萬(wàn))?次訪問(wèn)才會(huì)將訪問(wèn) counter 增長(zhǎng)到 255,而默認(rèn)的 10?也能支持到 1M(100萬(wàn))?次訪問(wèn) counter 才能達(dá)到 255 上限,這在大部分場(chǎng)景都是足夠滿足需求的。

          訪問(wèn)頻次遞減


          如果訪問(wèn)頻次 counter 只是一直在遞增,那么遲早會(huì)全部都到 255,也就是說(shuō) counter 一直遞增不能完全反應(yīng)一個(gè) key 的熱度的,所以當(dāng)某一個(gè) key 一段時(shí)間不被訪問(wèn)之后,counter 也需要對(duì)應(yīng)減少。

          counter 的減少速度由參數(shù) lfu-decay-time 進(jìn)行控制,默認(rèn)是 1,單位是分鐘。默認(rèn)值 1 表示:N 分鐘內(nèi)沒(méi)有訪問(wèn),counter 就要減 N。
          lfu-decay-time 1

          具體算法如下:

          1. 獲取當(dāng)前時(shí)間戳,轉(zhuǎn)化為分鐘后取低 16 位(為了方便后續(xù)計(jì)算,這個(gè)值記為 now)。

          2. 取出對(duì)象內(nèi)的 lru 屬性中的高 16 位(為了方便后續(xù)計(jì)算,這個(gè)值記為 ldt)。

          3. 當(dāng) lru > now 時(shí),默認(rèn)為過(guò)了一個(gè)周期(16 位,最大 65535),則取差值 65535-ldt+now:當(dāng) lru <= now 時(shí),取差值 now-ldt(為了方便后續(xù)計(jì)算,這個(gè)差值記為 idle_time)。

          4. 取出配置文件中的 lfu_decay_time 值,然后計(jì)算:idle_time / lfu_decay_time(為了方便后續(xù)計(jì)算,這個(gè)值記為num_periods)。

          5. 最后將counter減少:counter - num_periods。


          看起來(lái)這么復(fù)雜,其實(shí)計(jì)算公式就是一句話:取出當(dāng)前的時(shí)間戳和對(duì)象中的 lru 屬性進(jìn)行對(duì)比,計(jì)算出當(dāng)前多久沒(méi)有被訪問(wèn)到,比如計(jì)算得到的結(jié)果是 100?分鐘沒(méi)有被訪問(wèn),然后再去除配置參數(shù) lfu_decay_time,如果這個(gè)配置默認(rèn)為 1也即是 100/1=100,代表 100?分鐘沒(méi)訪問(wèn),所以 counter 就減少 100。

          # 總結(jié)


          本文主要介紹了 Redis 過(guò)期鍵的處理策略,以及當(dāng)服務(wù)器內(nèi)存不夠時(shí) Redis 的 8 種淘汰策略,最后介紹了 Redis 中的兩種主要的淘汰算法 LRU 和 LFU。

          如有文章對(duì)你有幫助,

          歡迎關(guān)注??、點(diǎn)贊??、轉(zhuǎn)發(fā)??!



          推薦,?Java面試題庫(kù),詳情點(diǎn)擊:
          牛逼!又發(fā)現(xiàn)了一款牛逼的Java面試題庫(kù),史上最強(qiáng)!


          瀏覽 19
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  国产高清无码免费在线观看 | 依人视频网站 | 久久人体视频 | 亚洲天堂网在线视频 | 亚洲无码免费视频在线观看 |