<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          100 個(gè) Numpy 闖關(guān)小例子,建議收藏!

          共 33249字,需瀏覽 67分鐘

           ·

          2021-08-16 07:40

          大家好,我是 Jack。


          上兩天發(fā)了一篇:60 個(gè) Python 闖關(guān)小例子,建議收藏!


          很多小伙伴反映很不錯(cuò),我趕忙找了個(gè) 100 道 numpy 的內(nèi)容。


          Numpy 是 Python 做數(shù)據(jù)分析所必須要掌握的基礎(chǔ)庫(kù)之一,以下題是github上的開源項(xiàng)目,主要為了檢測(cè)你的 Numpy 能力,同時(shí)對(duì)你的學(xué)習(xí)作為一個(gè)補(bǔ)充。

          來(lái)源:https://github.com/rougier/numpy-100

          1. 導(dǎo)入numpy庫(kù)并取別名為np (★☆☆)

          (提示: import … as …)
          import numpy as np

          2. 打印輸出numpy的版本和配置信息 (★☆☆)

          (提示: np.version, np.show_config)
          print(np.__version__)
          print(np.show_config())

          3. 創(chuàng)建一個(gè)長(zhǎng)度為10的空向量 (★☆☆)

          (提示: np.zeros)
          Z = np.zeros(10)
          print(Z)

          4. 如何找到任何一個(gè)數(shù)組的內(nèi)存大?。?★☆☆)

          (提示: size, itemsize)
          Z = np.zeros((10,10))
          print("%d bytes" % (Z.size * Z.itemsize))

          5. 如何從命令行得到numpy中add函數(shù)的說(shuō)明文檔? (★☆☆)

          (提示: np.info)
          import numpy
          numpy.info(numpy.add)

          6. 創(chuàng)建一個(gè)長(zhǎng)度為10并且除了第五個(gè)值為1的空向量 (★☆☆)

          (提示: array[4])
          Z = np.zeros(10)
          Z[4] = 1
          print(Z)

          7. 創(chuàng)建一個(gè)值域范圍從10到49的向量(★☆☆)

          (提示: np.arange)
          Z = np.arange(10,50)
          print(Z)

          8.  反轉(zhuǎn)一個(gè)向量(第一個(gè)元素變?yōu)樽詈笠粋€(gè)) (★☆☆)

          (提示: array[::-1])
          Z = np.arange(50)
          Z = Z[::-1]
          print(Z)

          9. 創(chuàng)建一個(gè) 3x3 并且值從0到8的矩陣(★☆☆)

          (提示: reshape)
          Z = np.arange(9).reshape(3,3)
          print(Z)

          10. 找到數(shù)組[1,2,0,0,4,0]中非0元素的位置索引 (★☆☆)

          (提示: np.nonzero)
          nz = np.nonzero([1,2,0,0,4,0])
          print(nz)

          11. 創(chuàng)建一個(gè) 3x3 的單位矩陣 (★☆☆)

          (提示: np.eye)
          Z = np.eye(3)
          print(Z)

          12. 創(chuàng)建一個(gè) 3x3x3的隨機(jī)數(shù)組 (★☆☆)

          (提示: np.random.random)
          Z = np.random.random((3,3,3))
          print(Z)

          13. 創(chuàng)建一個(gè) 10x10 的隨機(jī)數(shù)組并找到它的最大值和最小值 (★☆☆)

          (提示: min, max)
          Z = np.random.random((10,10))
          Zmin, Zmax = Z.min(), Z.max()
          print(Zmin, Zmax)

          14. 創(chuàng)建一個(gè)長(zhǎng)度為30的隨機(jī)向量并找到它的平均值 (★☆☆)

          (提示: mean)
          Z = np.random.random(30)
          m = Z.mean()
          print(m)

          15. 創(chuàng)建一個(gè)二維數(shù)組,其中邊界值為1,其余值為0 (★☆☆)

          (提示: array[1:-1, 1:-1])
          Z = np.ones((10,10))
          Z[1:-1,1:-1] = 0
          print(Z)

          16. 對(duì)于一個(gè)存在在數(shù)組,如何添加一個(gè)用0填充的邊界? (★☆☆)

          (提示: np.pad)
          Z = np.ones((5,5))
          Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
          print(Z)

          17. 下面表達(dá)式運(yùn)行的結(jié)果是什么?(★☆☆)

          (提示: NaN = not a number, inf = infinity)
          (提示:NaN : 不是一個(gè)數(shù),inf : 無(wú)窮)
          # 表達(dá)式                           # 結(jié)果
          0 * np.nan                        nan
          np.nan == np.nan                  False
          np.inf > np.nan                   False
          np.nan - np.nan                   nan
          0.3 == 3 * 0.1                    False

          18. 創(chuàng)建一個(gè) 5x5的矩陣,并設(shè)置值1,2,3,4落在其對(duì)角線下方位置 (★☆☆)

          (提示: np.diag)
          Z = np.diag(1+np.arange(4),k=-1)
          print(Z)

          19. 創(chuàng)建一個(gè)8x8 的矩陣,并且設(shè)置成棋盤樣式 (★☆☆)

          (提示: array[::2])
          Z = np.zeros((8,8),dtype=int)
          Z[1::2,::2] = 1
          Z[::2,1::2] = 1
          print(Z)

          20. 考慮一個(gè) (6,7,8) 形狀的數(shù)組,其第100個(gè)元素的索引(x,y,z)是什么?

          (提示: np.unravel_index)
          print(np.unravel_index(100,(6,7,8)))

          21. 用tile函數(shù)去創(chuàng)建一個(gè) 8x8的棋盤樣式矩陣(★☆☆)

          (提示: np.tile)
          Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
          print(Z)

          22. 對(duì)一個(gè)5x5的隨機(jī)矩陣做歸一化(★☆☆)

          (提示: (x - min) / (max - min))
          Z = np.random.random((5,5))
          Zmax, Zmin = Z.max(), Z.min()
          Z = (Z - Zmin)/(Zmax - Zmin)
          print(Z)

          23. 創(chuàng)建一個(gè)將顏色描述為(RGBA)四個(gè)無(wú)符號(hào)字節(jié)的自定義dtype?(★☆☆)

          (提示: np.dtype)
          color = np.dtype([("r", np.ubyte, 1),
                            ("g", np.ubyte, 1),
                            ("b", np.ubyte, 1),
                            ("a", np.ubyte, 1)])
          color

          24. 一個(gè)5x3的矩陣與一個(gè)3x2的矩陣相乘,實(shí)矩陣乘積是什么?(★☆☆)

          (提示: np.dot | @)
          Z = np.dot(np.ones((5,3)), np.ones((3,2)))
          print(Z)

          25. 給定一個(gè)一維數(shù)組,對(duì)其在3到8之間的所有元素取反 (★☆☆)

          (提示: >, <=)
          Z = np.arange(11)
          Z[(3 < Z) & (Z <= 8)] *= -1
          print(Z)

          26. 下面腳本運(yùn)行后的結(jié)果是什么? (★☆☆)

          (提示: np.sum)
          # Author: Jake VanderPlas               # 結(jié)果

          print(sum(range(5),-1))                 9
          from numpy import *                     
          print(sum(range(5),-1))                 10    #numpy.sum(a, axis=None)

          27. 考慮一個(gè)整數(shù)向量Z,下列表達(dá)合法的是哪個(gè)? (★☆☆)

          (提示:這里還有“位運(yùn)算符”)
          Z**Z                        True
          2 << Z >> 2                 False
          Z <- Z                      True
          1j*Z                        True  #復(fù)數(shù)           
          Z/1/1                       True
          Z<Z>Z                       False

          28. 下面表達(dá)式的結(jié)果分別是什么?(★☆☆)

          np.array(0) / np.array(0)                           nan
          np.array(0) // np.array(0)                          0
          np.array([np.nan]).astype(int).astype(float)        -2.14748365e+09

          29. 如何從零位開始舍入浮點(diǎn)數(shù)組?(★☆☆)

          (提示: np.uniform, np.copysign, np.ceil, np.abs)
          # Author: Charles R Harris

          Z = np.random.uniform(-10,+10,10)
          print (np.copysign(np.ceil(np.abs(Z)), Z))

          30. 如何找出兩個(gè)數(shù)組公共的元素? (★☆☆)

          (提示: np.intersect1d)
          Z1 = np.random.randint(01010)
          Z2 = np.random.randint(01010)
          print (np.intersect1d(Z1, Z2))

          31. 如何忽略所有的 numpy 警告(盡管不建議這么做)? (★☆☆)

          (提示: np.seterr, np.errstate)
          # Suicide mode on
          defaults = np.seterr(all="ignore")
          Z = np.ones(1) / 0

          # Back to sanity
          _ = np.seterr(**defaults)

          # 另一個(gè)等價(jià)的方式, 使用上下文管理器(context manager)
          with np.errstate(divide='ignore'):
              Z = np.ones(1) / 0

          32. 下面的表達(dá)式是否為真? (★☆☆)

          (提示: 虛數(shù))
          np.sqrt(-1) == np.emath.sqrt(-1)     Faslse

          33. 如何獲得昨天,今天和明天的日期? (★☆☆)

          (提示: np.datetime64, np.timedelta64)
          yesterday = np.datetime64('today''D') - np.timedelta64(1'D')
          today = np.datetime64('today''D')
          tomorrow = np.datetime64('today''D') + np.timedelta64(1'D')

          34. 怎么獲得所有與2016年7月的所有日期? (★★☆)

          (提示: np.arange(dtype=datetime64['D']))
          Z = np.arange('2016-07''2016-08', dtype='datetime64[D]')
          print (Z)

          35. 如何計(jì)算 ((A+B)*(-A/2)) (不使用中間變量)? (★★☆)

          (提示: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=))
          A = np.ones(3) * 1
          B = np.ones(3) * 1
          C = np.ones(3) * 1
          np.add(A, B, out=B)
          np.divide(A, 2, out=A)
          np.negative(A, out=A)
          np.multiply(A, B, out=A)

          36. 用5種不同的方法提取隨機(jī)數(shù)組中的整數(shù)部分 (★★☆)

          (提示: %, np.floor, np.ceil, astype, np.trunc)
          Z = np.random.uniform(01010)
          print (Z - Z % 1)
          print (np.floor(Z))
          print (np.cell(Z)-1)
          print (Z.astype(int))
          print (np.trunc(Z))

          37. 創(chuàng)建一個(gè)5x5的矩陣且每一行的值范圍為從0到4 (★★☆)

          (提示: np.arange)
          Z = np.zeros((55))
          Z += np.arange(5)
          print (Z)

          38. 如何用一個(gè)生成10個(gè)整數(shù)的函數(shù)來(lái)構(gòu)建數(shù)組 (★☆☆)

          (提示: np.fromiter)
          def generate():
              for x in range(10):
                yield x
          Z = np.fromiter(generate(), dtype=float, count=-1)
          print (Z)

          39. 創(chuàng)建一個(gè)大小為10的向量, 值域?yàn)?到1,不包括0和1 (★★☆)

          (提示: np.linspace)
          Z = np.linspace(0112, endpoint=True)[1-1]
          print (Z)

          40. 創(chuàng)建一個(gè)大小為10的隨機(jī)向量,并把它排序 (★★☆)

          (提示: sort)
          Z = np.random.random(10)
          Z.sort()
          print (Z)

          41.  對(duì)一個(gè)小數(shù)組進(jìn)行求和有沒(méi)有辦法比np.sum更快? (★★☆)

          (提示: np.add.reduce)
          # Author: Evgeni Burovski

          Z = np.arange(10)
          np.add.reduce(Z)

          # np.add.reduce 是numpy.add模塊中的一個(gè)ufunc(universal function)函數(shù),C語(yǔ)言實(shí)現(xiàn)

          42. 如何判斷兩和隨機(jī)數(shù)組相等 (★★☆)

          (提示: np.allclose, np.array_equal)
          A = np.random.randint(025)
          B = np.random.randint(025)

          # 假設(shè)array的形狀(shape)相同和一個(gè)誤差容限(tolerance)
          equal = np.allclose(A,B)
          print(equal)

          # 檢查形狀和元素值,沒(méi)有誤差容限(值必須完全相等)
          equal = np.array_equal(A,B)
          print(equal)

          43. 把數(shù)組變?yōu)橹蛔x (★★☆)

          (提示: flags.writeable)
          Z = np.zeros(5)
          Z.flags.writeable = False
          Z[0] = 1

          44. 將一個(gè)10x2的笛卡爾坐標(biāo)矩陣轉(zhuǎn)換為極坐標(biāo) (★★☆)

          (提示: np.sqrt, np.arctan2)
          Z = np.random.random((102))
          X, Y = Z[:, 0], Z[:, 1]
          R = np.sqrt(X**2 + Y**2)
          T = np.arctan2(Y, X)
          print (R)
          print (T)

          45. 創(chuàng)建一個(gè)大小為10的隨機(jī)向量并且將該向量中最大的值替換為0(★★☆)

          (提示: argmax)
          Z = np.random.random(10)
          Z[Z.argmax()] = 0
          print (Z)

          46. 創(chuàng)建一個(gè)結(jié)構(gòu)化數(shù)組,其中x和y坐標(biāo)覆蓋[0, 1]x[1, 0]區(qū)域 (★★☆)

          (提示: np.meshgrid)
          Z = np.zeros((55), [('x', float), ('y', float)])
          Z['x'], Z['y'] = np.meshgrid(np.linspace(015), np.linspace(015))
          print (Z)

          47. 給定兩個(gè)數(shù)組X和Y,構(gòu)造柯西(Cauchy)矩陣C () (★★☆)

          (提示: np.subtract.outer)
          # Author: Evgeni Burovski

          X = np.arange(8)
          Y = X + 0.5
          C = 1.0 / np.subtract.outer(X, Y)
          print (C)
          print(np.linalg.det(C)) # 計(jì)算行列式

          48. 打印每個(gè)numpy 類型的最小和最大可表示值 (★★☆)

          (提示: np.iinfo, np.finfo, eps)
          for dtype in [np.int8, np.int32, np.int64]:
             print(np.iinfo(dtype).min)
             print(np.iinfo(dtype).max)
          for dtype in [np.float32, np.float64]:
             print(np.finfo(dtype).min)
             print(np.finfo(dtype).max)
             print(np.finfo(dtype).eps)

          49. 如何打印數(shù)組中所有的值?(★★☆)

          (提示: np.set_printoptions)
          np.set_printoptions(threshold=np.nan)
          Z = np.zeros((16,16))
          print(Z)

          50. 如何在數(shù)組中找到與給定標(biāo)量接近的值? (★★☆)

          (提示: argmin)
          Z = np.arange(100)
          v = np.random.uniform(0100)
          index = (np.abs(Z-v)).argmin()
          print(Z[index])

          51. 創(chuàng)建表示位置(x, y)和顏色(r, g, b, a)的結(jié)構(gòu)化數(shù)組 (★★☆)

          (提示: dtype)
          Z = np.zeros(10, [('position', [('x', float, 1), 
                                          ('y', float, 1)]),
                            ('color',    [('r', float, 1), 
                                          ('g', float, 1), 
                                          ('b', float, 1)])])
          print (Z)

          52. 思考形狀為(100, 2)的隨機(jī)向量,求出點(diǎn)與點(diǎn)之間的距離 (★★☆)

          (提示: np.atleast_2d, T, np.sqrt)
          Z = np.random.random((1002))
          X, Y = np.atleast_2d(Z[:, 0], Z[:, 1])
          D = np.sqrt((X-X.T)**2 + (Y-Y.T)**2)
          print (D)

          # 使用scipy庫(kù)可以更快
          import scipy.spatial

          Z = np.random.random((100,2))
          D = scipy.spatial.distance.cdist(Z,Z)
          print(D)

          53. 如何將類型為float(32位)的數(shù)組類型轉(zhuǎn)換位integer(32位)? (★★☆)

          (提示: astype(copy=False))
          Z = np.arange(10, dtype=np.int32)
          Z = Z.astype(np.float32, copy=False)
          print(Z)

          54. 如何讀取下面的文件? (★★☆)

          (提示: np.genfromtxt)
          12345
          6,  ,  , 78
           ,  , 9,10,11

          # 先把上面保存到文件example.txt中
          # 這里不使用StringIO, 因?yàn)镻ython2 和Python3 在這個(gè)地方有兼容性問(wèn)題
          Z = np.genfromtxt("example.txt", delimiter=",")  
          print(Z)

          55. numpy數(shù)組枚舉(enumerate)的等價(jià)操作? (★★☆)

          (提示: np.ndenumerate, np.ndindex)
          Z = np.arange(9).reshape(3,3)
          for index, value in np.ndenumerate(Z):
              print(index, value)
          for index in np.ndindex(Z.shape):
              print(index, Z[index])

          56. 構(gòu)造一個(gè)二維高斯矩陣(★★☆)

          (提示: np.meshgrid, np.exp)
          X, Y = np.meshgrid(np.linspace(-1110), np.linspace(-1110))
          D = np.sqrt(X**2 + Y**2)
          sigma, mu = 1.00.0
          G = np.exp(-( (D-mu)**2 / (2.0*sigma**2) ))
          print (G)

          57. 如何在二維數(shù)組的隨機(jī)位置放置p個(gè)元素? (★★☆)

          (提示: np.put, np.random.choice)
          # Author: Divakar

          n = 10
          p = 3
          Z = np.zeros((n,n))
          np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
          print(Z)

          58. 減去矩陣每一行的平均值 (★★☆)

          (提示: mean(axis=,keepdims=))
          # Author: Warren Weckesser

          X = np.random.rand(510)

          # 新
          Y = X - X.mean(axis=1, keepdims=True)

          # 舊
          Y = X - X.mean(axis=1).reshape(-11)

          print(Y)

          59. 如何對(duì)數(shù)組通過(guò)第n列進(jìn)行排序? (★★☆)

          (提示: argsort)
          # Author: Steve Tjoa

          Z = np.random.randint(0,10,(3,3))
          print(Z)
          print(Z[ Z[:,1].argsort() ])

          60. 如何判斷一個(gè)給定的二維數(shù)組存在空列? (★★☆)

          (提示: any, ~)
          # Author: Warren Weckesser

          Z = np.random.randint(0,3,(3,10))
          print((~Z.any(axis=0)).any())

          61. 從數(shù)組中找出與給定值最接近的值 (★★☆)

          (提示: np.abs, argmin, flat)
          Z = np.random.uniform(0,1,10)
          z = 0.5
          m = Z.flat[np.abs(Z - z).argmin()]
          print(m)

          62. 思考形狀為(1, 3)和(3, 1)的兩個(gè)數(shù)組形狀,如何使用迭代器計(jì)算它們的和? (★★☆)

          (提示: np.nditer)
          A = np.arange(3).reshape(31)
          B = np.arange(3).reshape(13)
          it = np.nditer([A, B, None])
          for x, y, z in it:
              z[...] = x + y
          print (it.operands[2])

          63. 創(chuàng)建一個(gè)具有name屬性的數(shù)組類 (★★☆)

          (提示: class method)
          class NameArray(np.ndarray):
              def __new__(cls, array, name="no name"):
                  obj = np.asarray(array).view(cls)
                  obj.name = name
                  return obj
              def __array_finalize__(self, obj):
                  if obj is Nonereturn
                  self.info = getattr(obj, 'name'"no name")

          Z = NameArray(np.arange(10), "range_10")
          print (Z.name)

          64. 給定一個(gè)向量,如何讓在第二個(gè)向量索引的每個(gè)元素加1(注意重復(fù)索引)? (★★★)

          (提示: np.bincount | np.add.at)
          # Author: Brett Olsen

          Z = np.ones(10)
          I = np.random.randint(0,len(Z),20)
          Z += np.bincount(I, minlength=len(Z))
          print(Z)

          # Another solution
          # Author: Bartosz Telenczuk
          np.add.at(Z, I, 1)
          print(Z)

          65. 如何根據(jù)索引列表I將向量X的元素累加到數(shù)組F? (★★★)

          (提示: np.bincount)
          # Author: Alan G Isaac

          X = [1,2,3,4,5,6]
          I = [1,3,9,3,4,1]
          F = np.bincount(I,X)
          print(F)

          66. 思考(dtype = ubyte)的(w, h, 3)圖像,計(jì)算唯一顏色的值(★★★)

          (提示: np.unique)
          # Author: Nadav Horesh

          w,h = 16,16
          I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
          F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
          n = len(np.unique(F))
          print(np.unique(I))

          67. 思考如何求一個(gè)四維數(shù)組最后兩個(gè)軸的數(shù)據(jù)和(★★★)

          (提示: sum(axis=(-2,-1)))
          A = np.random.randint(0,10,(3,4,3,4))
          # 傳遞一個(gè)元組(numpy 1.7.0)
          sum = A.sum(axis=(-2,-1))
          print(sum)

          # 將最后兩個(gè)維度壓縮為一個(gè)
          # (適用于不接受軸元組參數(shù)的函數(shù))
          sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
          print(sum)

          68. 考慮一維向量D,如何使用相同大小的向量S來(lái)計(jì)算D的子集的均值,其描述子集索引?(★★★)

          (提示: np.bincount)
          # Author: Jaime Fernández del Río

          D = np.random.uniform(0,1,100)
          S = np.random.randint(0,10,100)
          D_sums = np.bincount(S, weights=D)
          D_counts = np.bincount(S)
          D_means = D_sums / D_counts
          print(D_means)

          # Pandas solution as a reference due to more intuitive code
          import pandas as pd
          print(pd.Series(D).groupby(S).mean())

          69. 如何獲得點(diǎn)積的對(duì)角線?(★★★)

          (提示: np.diag)
          # Author: Mathieu Blondel

          A = np.random.uniform(0,1,(5,5))
          B = np.random.uniform(0,1,(5,5))

          # Slow version  
          np.diag(np.dot(A, B))

          # Fast version
          np.sum(A * B.T, axis=1)

          # Faster version
          np.einsum("ij,ji->i", A, B)

          70.考慮向量[1,2,3,4,5],如何建立一個(gè)新的向量,在每個(gè)值之間交錯(cuò)有3個(gè)連續(xù)的零?(★★★)

          (提示: array[::4])
          # Author: Warren Weckesser

          Z = np.array([1,2,3,4,5])
          nz = 3
          Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
          Z0[::nz+1] = Z
          print(Z0)

          71. 考慮一個(gè)維度(5,5,3)的數(shù)組,如何將其與一個(gè)(5,5)的數(shù)組相乘?(★★★)

          (提示: array[:, :, None])
          A = np.ones((5,5,3))
          B = 2*np.ones((5,5))
          print(A * B[:,:,None])

          72. 如何對(duì)一個(gè)數(shù)組中任意兩行做交換? (★★★)

          (提示: array[[]] = array[[]])
          # Author: Eelco Hoogendoorn

          A = np.arange(25).reshape(5,5)
          A[[0,1]] = A[[1,0]]
          print(A)

          73. 思考描述10個(gè)三角形(共享頂點(diǎn))的一組10個(gè)三元組,找到組成所有三角形的唯一線段集 (★★★)

          (提示: repeat, np.roll, np.sort, view, np.unique)
          # Author: Nicolas P. Rougier

          faces = np.random.randint(0,100,(10,3))
          F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
          F = F.reshape(len(F)*3,2)
          F = np.sort(F,axis=1)
          G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
          G = np.unique(G)
          print(G)

          74. 給定一個(gè)二進(jìn)制的數(shù)組C,如何生成一個(gè)數(shù)組A滿足np.bincount(A)==C? (★★★)

          (提示: np.repeat)
          # Author: Jaime Fernández del Río

          C = np.bincount([1,1,2,3,4,4,6])
          A = np.repeat(np.arange(len(C)), C)
          print(A)

          75. 如何通過(guò)滑動(dòng)窗口計(jì)算一個(gè)數(shù)組的平均數(shù)? (★★★)

          (提示: np.cumsum)
          # Author: Jaime Fernández del Río

          def moving_average(a, n=3) :
              ret = np.cumsum(a, dtype=float)
              ret[n:] = ret[n:] - ret[:-n]
              return ret[n - 1:] / n
          Z = np.arange(20)
          print(moving_average(Z, n=3))

          76. 思考以為數(shù)組Z,構(gòu)建一個(gè)二維數(shù)組,其第一行是(Z[0],Z[1],Z[2]), 然后每一行移動(dòng)一位,最后一行為 (Z[-3],Z[-2],Z[-1]) (★★★)

          (提示: from numpy.lib import stride_tricks)
          # Author: Joe Kington / Erik Rigtorp
          from numpy.lib import stride_tricks

          def rolling(a, window):
              shape = (a.size - window + 1, window)
              strides = (a.itemsize, a.itemsize)
              return stride_tricks.as_strided(a, shape=shape, strides=strides)
          Z = rolling(np.arange(10), 3)
          print(Z)

          77. 如何對(duì)布爾值取反,或改變浮點(diǎn)數(shù)的符號(hào)(sign)? (★★★)

          (提示: np.logical_not, np.negative)
          # Author: Nathaniel J. Smith

          Z = np.random.randint(0,2,100)
          np.logical_not(Z, out=Z)

          Z = np.random.uniform(-1.0,1.0,100)
          np.negative(Z, out=Z)

          78. 思考兩組點(diǎn)集P0和P1去描述一組線(二維)和一個(gè)點(diǎn)p,如何計(jì)算點(diǎn)p到每一條線 i (P0[i],P1[i])的距離?(★★★)

          def distance(P0, P1, p):
              T = P1 - P0
              L = (T**2).sum(axis=1)
              U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
              U = U.reshape(len(U),1)
              D = P0 + U*T - p
              return np.sqrt((D**2).sum(axis=1))

          P0 = np.random.uniform(-10,10,(10,2))
          P1 = np.random.uniform(-10,10,(10,2))
          p  = np.random.uniform(-10,10,( 1,2))
          print(distance(P0, P1, p))

          79. 考慮兩組點(diǎn)集P0和P1去描述一組線(二維)和一組點(diǎn)集P,如何計(jì)算每一個(gè)點(diǎn) j(P[j]) 到每一條線 i (P0[i],P1[i])的距離? (★★★)

          # Author: Italmassov Kuanysh

          # based on distance function from previous question
          P0 = np.random.uniform(-1010, (10,2))
          P1 = np.random.uniform(-10,10,(10,2))
          p = np.random.uniform(-1010, (10,2))
          print(np.array([distance(P0,P1,p_i) for p_i in p]))

          80. 思考一個(gè)任意的數(shù)組,編寫一個(gè)函數(shù),該函數(shù)提取一個(gè)具有固定形狀的子部分,并以一個(gè)給定的元素為中心(在該部分填充值) (★★★)

          (提示: minimum, maximum)
          # Author: Nicolas Rougier

          Z = np.random.randint(0,10,(10,10))
          shape = (5,5)
          fill  = 0
          position = (1,1)

          R = np.ones(shape, dtype=Z.dtype)*fill
          P  = np.array(list(position)).astype(int)
          Rs = np.array(list(R.shape)).astype(int)
          Zs = np.array(list(Z.shape)).astype(int)
          R_start = np.zeros((len(shape),)).astype(int)
          R_stop  = np.array(list(shape)).astype(int)
          Z_start = (P-Rs//2)
          Z_stop  = (P+Rs//2)+Rs%2

          R_start = (R_start - np.minimum(Z_start,0)).tolist()
          Z_start = (np.maximum(Z_start,0)).tolist()
          R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
          Z_stop = (np.minimum(Z_stop,Zs)).tolist()

          r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
          z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
          R[r] = Z[z]
          print(Z)
          print(R)

          81. 考慮一個(gè)數(shù)組Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14],如何生成一個(gè)數(shù)組R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ...,[11,12,13,14]]? (★★★)

          (提示: stride_tricks.as_strided)
          # Author: Stefan van der Walt

          Z = np.arange(1,15,dtype=np.uint32)
          R = stride_tricks.as_strided(Z,(11,4),(4,4))
          print(R)

          82. 計(jì)算矩陣的秩 (★★★)

          (提示: np.linalg.svd)
          # Author: Stefan van der Walt

          Z = np.random.uniform(0,1,(10,10))
          U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
          rank = np.sum(S > 1e-10)
          print(rank)

          83. 如何找出數(shù)組中出現(xiàn)頻率最高的值?(★★★)

          (提示: np.bincount, argmax)
          Z = np.random.randint(0,10,50)
          print(np.bincount(Z).argmax())

          84. 從一個(gè)10x10的矩陣中提取出連續(xù)的3x3區(qū)塊(★★★)

          (提示: stride_tricks.as_strided)
          # Author: Chris Barker

          Z = np.random.randint(0,5,(10,10))
          n = 3
          i = 1 + (Z.shape[0]-3)
          j = 1 + (Z.shape[1]-3)
          C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
          print(C)

          85.創(chuàng)建一個(gè)滿足 Z[i,j] == Z[j,i]的二維數(shù)組子類 (★★★)

          (提示: class method)
          # Author: Eric O. Lebigot
          # Note: only works for 2d array and value setting using indices

          class Symetric(np.ndarray):
              def __setitem__(self, index, value):
                  i,j = index
                  super(Symetric, self).__setitem__((i,j), value)
                  super(Symetric, self).__setitem__((j,i), value)

          def symetric(Z):
              return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)

          S = symetric(np.random.randint(0,10,(5,5)))
          S[2,3] = 42
          print(S)

          86. 考慮p個(gè) nxn 矩陣和一組形狀為(n,1)的向量,如何直接計(jì)算p個(gè)矩陣的乘積(n,1)? (★★★)

          (提示: np.tensordot)
          # Author: Stefan van der Walt

          p, n = 1020
          M = np.ones((p,n,n))
          V = np.ones((p,n,1))
          S = np.tensordot(M, V, axes=[[02], [01]])
          print(S)

          # It works, because:
          # M is (p,n,n)
          # V is (p,n,1)
          # Thus, summing over the paired axes 0 and 0 (of M and V independently),
          # and 2 and 1, to remain with a (n,1) vector.

          87. 對(duì)于一個(gè)16x16的數(shù)組,如何得到一個(gè)區(qū)域的和(區(qū)域大小為4x4)? (★★★)

          (提示: np.add.reduceat)
          # Author: Robert Kern

          Z = np.ones((16,16))
          k = 4
          S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1)
          print(S)

          88. 如何利用numpy數(shù)組實(shí)現(xiàn)Game of Life? (★★★)

          (提示: Game of Life , Game of Life有哪些圖形?)
          # Author: Nicolas Rougier

          def iterate(Z):
              # Count neighbours
              N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
                   Z[1:-1,0:-2]                + Z[1:-1,2:] +
                   Z[2:  ,0:-2] + Z[2:  ,1:-1] + Z[2:  ,2:])

              # Apply rules
              birth = (N==3) & (Z[1:-1,1:-1]==0)
              survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
              Z[...] = 0
              Z[1:-1,1:-1][birth | survive] = 1
              return Z

          Z = np.random.randint(0,2,(50,50))
          for i in range(100): Z = iterate(Z)
          print(Z)

          89. 如何找到一個(gè)數(shù)組的第n個(gè)最大值? (★★★)

          (提示: np.argsort | np.argpartition)
          Z = np.arange(10000)
          np.random.shuffle(Z)
          n = 5

          # Slow
          print (Z[np.argsort(Z)[-n:]])

          # Fast
          print (Z[np.argpartition(-Z,n)[:n]])

          90. 給定任意個(gè)數(shù)向量,創(chuàng)建笛卡爾積(每一個(gè)元素的每一種組合) (★★★)

          (提示: np.indices)
          # Author: Stefan Van der Walt

          def cartesian(arrays):
              arrays = [np.asarray(a) for a in arrays]
              shape = (len(x) for x in arrays)

              ix = np.indices(shape, dtype=int)
              ix = ix.reshape(len(arrays), -1).T

              for n, arr in enumerate(arrays):
                  ix[:, n] = arrays[n][ix[:, n]]

              return ix

          print (cartesian(([123], [45], [67])))

          91. 如何從一個(gè)常規(guī)數(shù)組中創(chuàng)建記錄數(shù)組(record array)? (★★★)

          (提示: np.core.records.fromarrays)
          Z = np.array([("Hello"2.53),
                        ("World"3.62)])
          R = np.core.records.fromarrays(Z.T, 
                                         names='col1, col2, col3',
                                         formats = 'S8, f8, i8')
          print(R)

          92. 思考一個(gè)大向量Z, 用三種不同的方法計(jì)算它的立方 (★★★)

          (提示: np.power, *, np.einsum)
          # Author: Ryan G.

          x = np.random.rand(5e7)

          %timeit np.power(x,3)
          %timeit x*x*x
          %timeit np.einsum('i,i,i->i',x,x,x)

          93. 考慮兩個(gè)形狀分別為(8,3) 和(2,2)的數(shù)組A和B. 如何在數(shù)組A中找到滿足包含B中元素的行?(不考慮B中每行元素順序)?(★★★)

          (提示: np.where)
          # Author: Gabe Schwartz

          A = np.random.randint(0,5,(8,3))
          B = np.random.randint(0,5,(2,2))

          C = (A[..., np.newaxis, np.newaxis] == B)
          rows = np.where(C.any((3,1)).all(1))[0]
          print(rows)

          94. 思考一個(gè)10x3的矩陣,如何分解出有不全相同值的行 (如 [2,2,3]) (★★★)

          # Author: Robert Kern

          Z = np.random.randint(0,5,(10,3))
          print(Z)
          # solution for arrays of all dtypes (including string arrays and record arrays)
          E = np.all(Z[:,1:] == Z[:,:-1], axis=1)
          U = Z[~E]
          print(U)
          # soluiton for numerical arrays only, will work for any number of columns in Z
          U = Z[Z.max(axis=1) != Z.min(axis=1),:]
          print(U)

          95. 將一個(gè)整數(shù)向量轉(zhuǎn)換為二進(jìn)制矩陣 (★★★)

          (提示: np.unpackbits)
          # Author: Warren Weckesser

          I = np.array([012315163264128])
          B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
          print(B[:,::-1])

          # Author: Daniel T. McDonald

          I = np.array([012315163264128], dtype=np.uint8)
          print(np.unpackbits(I[:, np.newaxis], axis=1))

          96. 給定一個(gè)二維數(shù)組,如何提取出唯一的行?(★★★)

          (提示: np.ascontiguousarray)
          # Author: Jaime Fernández del Río

          Z = np.random.randint(0,2,(6,3))
          T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
          _, idx = np.unique(T, return_index=True)
          uZ = Z[idx]
          print(uZ)

          97. 考慮兩個(gè)向量A和B,寫出用einsum等式對(duì)應(yīng)的inner, outer, sum, mul函數(shù) (★★★)

          (提示: np.einsum)
          # Author: Alex Riley
          # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/

          A = np.random.uniform(0,1,10)
          B = np.random.uniform(0,1,10)

          np.einsum('i->', A)       # np.sum(A)
          np.einsum('i,i->i', A, B) # A * B
          np.einsum('i,i', A, B)    # np.inner(A, B)
          np.einsum('i,j->ij', A, B)    # np.outer(A, B)

          98. 考慮一個(gè)由兩個(gè)向量描述的路徑(X,Y),如何用等距樣例(equidistant samples)對(duì)其進(jìn)行采樣(sample)(★★★)?

          (提示: np.cumsum, np.interp)
          # Author: Bas Swinckels

          phi = np.arange(010*np.pi, 0.1)
          a = 1
          x = a*phi*np.cos(phi)
          y = a*phi*np.sin(phi)

          dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
          r = np.zeros_like(x)
          r[1:] = np.cumsum(dr)                # integrate path
          r_int = np.linspace(0, r.max(), 200# regular spaced path
          x_int = np.interp(r_int, r, x)       # integrate path
          y_int = np.interp(r_int, r, y)

          99. 給定一個(gè)整數(shù)n 和一個(gè)二維數(shù)組X,從X中選擇可以被解釋為從多n度的多項(xiàng)分布式的行,即這些行只包含整數(shù)對(duì)n的和. (★★★)

          (提示: np.logical_and.reduce, np.mod)
          # Author: Evgeni Burovski

          X = np.asarray([[1.00.03.08.0],
                          [2.00.01.01.0],
                          [1.52.51.00.0]])
          n = 4
          M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
          M &= (X.sum(axis=-1) == n)
          print(X[M])

          100. 對(duì)于一個(gè)一維數(shù)組X,計(jì)算它boostrapped之后的95%置信區(qū)間的平均值. (★★★)

          (提示: np.percentile)
          # Author: Jessica B. Hamrick

          X = np.random.randn(100# random 1D array
          N = 1000 # number of bootstrap samples
          idx = np.random.randint(0, X.size, (N, X.size))
          means = X[idx].mean(axis=1)
          confint = np.percentile(means, [2.597.5])
          print(confint)
          ·················END·················

          推薦閱讀

          ?   被裁了。。?   這,就很抽象?   硬核圖解,再填猛將

          瀏覽 65
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  夜夜夜夜撸一撸 | 狠狠久久的视频 | 国产淫乱视频 | 国产精品久久久久久久久久中字幕 | 国产18第一无限资源网站 |