<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          論文速遞2022.10.11!

          共 4813字,需瀏覽 10分鐘

           ·

          2022-10-15 08:38


          強(qiáng)烈推薦:2000核時(shí)免費(fèi)領(lǐng),立刻開啟云上高性能計(jì)算 ?,注冊即送200元計(jì)算資源,https://www.bkunyun.com/wap/console?source=bkykolaistudy
          當(dāng)服務(wù)器有可視化界面,直接起飛!

          整理:AI算法與圖像處理
          CVPR2022論文和代碼整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo
          ECCV2022論文和代碼整理:https://github.com/DWCTOD/ECCV2022-Papers-with-Code-Demo
          歡迎關(guān)注公眾號 AI算法與圖像處理,獲取更多干貨:


          大家好,  最近正在優(yōu)化每周分享的CVPR$ECCV 2022論文, 目前考慮按照不同類別去分類,方便不同方向的小伙伴挑選自己感興趣的論文哈
          歡迎大家留言其他想法,  合適的話會采納哈! 求個三連支持一波哈

          建了一個知識星球,計(jì)劃不定期分享最新的成果和資源!感興趣可以掃描體驗(yàn),另外還有50個一年免費(fèi)體驗(yàn)名額,可以添加微信nvshenj125 申請。

          最新成果demo展示:

          代碼:https://github.com/krisnarengga/yolov7-image-segmentation

          配置好環(huán)境后運(yùn)行指令:python segment/predict_counting.py --weights yolov7-seg.pt --source 120.mp4 --view-img --nosave --trk



          最新論文整理


             ECCV2022

          Updated on : 11 Oct 2022

          total number : 10

          SCAM! Transferring humans between images with Semantic Cross Attention Modulation

          • 論文/Paper: http://arxiv.org/pdf/2210.04883

          • 代碼/Code: None

          Using Whole Slide Image Representations from Self-Supervised Contrastive Learning for Melanoma Concordance Regression

          • 論文/Paper: http://arxiv.org/pdf/2210.04803

          • 代碼/Code: None

          BoundaryFace: A mining framework with noise label self-correction for Face Recognition

          • 論文/Paper: http://arxiv.org/pdf/2210.04567

          • 代碼/Code: https://github.com/swjtu-3dvision/boundaryface

          Self-Supervised 3D Human Pose Estimation in Static Video Via Neural Rendering

          • 論文/Paper: http://arxiv.org/pdf/2210.04514

          • 代碼/Code: None

          Students taught by multimodal teachers are superior action recognizers

          • 論文/Paper: http://arxiv.org/pdf/2210.04331

          • 代碼/Code: None

          Attention Diversification for Domain Generalization

          • 論文/Paper: http://arxiv.org/pdf/2210.04206

          • 代碼/Code: https://github.com/hikvision-research/domaingeneralization

          Fast-ParC: Position Aware Global Kernel for ConvNets and ViTs

          • 論文/Paper: http://arxiv.org/pdf/2210.04020

          • 代碼/Code: None

          FBNet: Feedback Network for Point Cloud Completion

          • 論文/Paper: http://arxiv.org/pdf/2210.03974

          • 代碼/Code: https://github.com/hikvision-research/3dvision

          Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images

          • 論文/Paper: http://arxiv.org/pdf/2210.04198

          • 代碼/Code: None

          Strong Gravitational Lensing Parameter Estimation with Vision Transformer

          • 論文/Paper: http://arxiv.org/pdf/2210.04143

          • 代碼/Code: https://github.com/kuanweih/strong_lensing_vit_resnet


              CVPR2022

             NeurIPS

          Updated on : 11 Oct 2022

          total number : 17

          4D Unsupervised Object Discovery

          • 論文/Paper: http://arxiv.org/pdf/2210.04801

          • 代碼/Code: https://github.com/robertwyq/lsmol

          OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point Clouds

          • 論文/Paper: http://arxiv.org/pdf/2210.04458

          • 代碼/Code: https://github.com/vlar-group/ogc

          Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization

          • 論文/Paper: http://arxiv.org/pdf/2210.04388

          • 代碼/Code: https://github.com/heimingx/semi_seg_proto

          CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds

          • 論文/Paper: http://arxiv.org/pdf/2210.04264

          • 代碼/Code: https://github.com/haiyang-w/cagroup3d

          Transformer-based Flood Scene Segmentation for Developing Countries

          • 論文/Paper: http://arxiv.org/pdf/2210.04218

          • 代碼/Code: None

          Let Images Give You More:Point Cloud Cross-Modal Training for Shape Analysis

          • 論文/Paper: http://arxiv.org/pdf/2210.04208

          • 代碼/Code: https://github.com/zhanheshen/pointcmt

          Coded Residual Transform for Generalizable Deep Metric Learning

          • 論文/Paper: http://arxiv.org/pdf/2210.04180

          • 代碼/Code: None

          Stimulative Training of Residual Networks: A Social Psychology Perspective of Loafing

          • 論文/Paper: http://arxiv.org/pdf/2210.04153

          • 代碼/Code: https://github.com/Sunshine-Ye/NIPS22-ST

          Robust Graph Structure Learning over Images via Multiple Statistical Tests

          • 論文/Paper: http://arxiv.org/pdf/2210.03956

          • 代碼/Code: https://github.com/thomas-wyh/b-attention

          Contact-aware Human Motion Forecasting

          • 論文/Paper: http://arxiv.org/pdf/2210.03954

          • 代碼/Code: https://github.com/wei-mao-2019/contawaremotionpred

          EgoTaskQA: Understanding Human Tasks in Egocentric Videos

          • 論文/Paper: http://arxiv.org/pdf/2210.03929

          • 代碼/Code: None

          ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial Viewpoints

          • 論文/Paper: http://arxiv.org/pdf/2210.03895

          • 代碼/Code: https://github.com/heathcliff-saku/viewfool_

          FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings

          • 論文/Paper: http://arxiv.org/pdf/2210.04620

          • 代碼/Code: https://github.com/owkin/flamby

          Grow and Merge: A Unified Framework for Continuous Categories Discovery

          • 論文/Paper: http://arxiv.org/pdf/2210.04174

          • 代碼/Code: None

          Few-Shot Continual Active Learning by a Robot

          • 論文/Paper: http://arxiv.org/pdf/2210.04137

          • 代碼/Code: None

          Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts

          • 論文/Paper: http://arxiv.org/pdf/2210.03885

          • 代碼/Code: https://github.com/n3il666/Meta-DMoE.

          In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?

          • 論文/Paper: http://arxiv.org/pdf/2210.03773

          • 代碼/Code: None




          瀏覽 179
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評論
          圖片
          表情
          推薦
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  一级片在线免费观看 | 韩国一区在线 | 91女人18毛片水多的意思 | 一级免费小电影黄色的 | 波多野结衣一区在线 |