<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          ollama

          聯(lián)合創(chuàng)作 · 2025-03-03 17:24

          Ollama

          Get up and running with large language models.

          macOS

          Download

          Windows

          Download

          Linux

          curl -fsSL https://ollama.com/install.sh | sh

          Manual install instructions

          Docker

          The official Ollama Docker image ollama/ollama is available on Docker Hub.

          Libraries

          Community

          Quickstart

          To run and chat with Llama 3.2:

          ollama run llama3.2

          Model library

          Ollama supports a list of models available on ollama.com/library

          Here are some example models that can be downloaded:

          ModelParametersSizeDownload
          DeepSeek-R17B4.7GBollama run deepseek-r1
          DeepSeek-R1671B404GBollama run deepseek-r1:671b
          Llama 3.370B43GBollama run llama3.3
          Llama 3.23B2.0GBollama run llama3.2
          Llama 3.21B1.3GBollama run llama3.2:1b
          Llama 3.2 Vision11B7.9GBollama run llama3.2-vision
          Llama 3.2 Vision90B55GBollama run llama3.2-vision:90b
          Llama 3.18B4.7GBollama run llama3.1
          Llama 3.1405B231GBollama run llama3.1:405b
          Phi 414B9.1GBollama run phi4
          Phi 3 Mini3.8B2.3GBollama run phi3
          Gemma 22B1.6GBollama run gemma2:2b
          Gemma 29B5.5GBollama run gemma2
          Gemma 227B16GBollama run gemma2:27b
          Mistral7B4.1GBollama run mistral
          Moondream 21.4B829MBollama run moondream
          Neural Chat7B4.1GBollama run neural-chat
          Starling7B4.1GBollama run starling-lm
          Code Llama7B3.8GBollama run codellama
          Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
          LLaVA7B4.5GBollama run llava
          Solar10.7B6.1GBollama run solar

          Note

          You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

          Customize a model

          Import from GGUF

          Ollama supports importing GGUF models in the Modelfile:

          1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

            FROM ./vicuna-33b.Q4_0.gguf

          2. Create the model in Ollama

            ollama create example -f Modelfile

          3. Run the model

            ollama run example

          Import from Safetensors

          See the guide on importing models for more information.

          Customize a prompt

          Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

          ollama pull llama3.2

          Create a Modelfile:

          FROM llama3.2

          # set the temperature to 1 [higher is more creative, lower is more coherent]

          PARAMETER temperature 1

          # set the system message

          SYSTEM """

          You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.

          """

          Next, create and run the model:

          ollama create mario -f ./Modelfile

          ollama run mario

          >>> hi

          Hello! It's your friend Mario.

          For more information on working with a Modelfile, see the Modelfile documentation.

          CLI Reference

          Create a model

          ollama create is used to create a model from a Modelfile.

          ollama create mymodel -f ./Modelfile

          Pull a model

          ollama pull llama3.2

          This command can also be used to update a local model. Only the diff will be pulled.

          Remove a model

          ollama rm llama3.2

          Copy a model

          ollama cp llama3.2 my-model

          Multiline input

          For multiline input, you can wrap text with """:

          >>> """Hello,

          ... world!

          ... """

          I'm a basic program that prints the famous "Hello, world!" message to the console.

          Multimodal models

          ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

          Output: The image features a yellow smiley face, which is likely the central focus of the picture.

          Pass the prompt as an argument

          ollama run llama3.2 "Summarize this file: $(cat README.md)"

          Output: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

          Show model information

          ollama show llama3.2

          List models on your computer

          ollama list

          List which models are currently loaded

          ollama ps

          Stop a model which is currently running

          ollama stop llama3.2

          Start Ollama

          ollama serve is used when you want to start ollama without running the desktop application.

          Building

          See the developer guide

          Running local builds

          Next, start the server:

          ./ollama serve

          Finally, in a separate shell, run a model:

          ./ollama run llama3.2

          REST API

          Ollama has a REST API for running and managing models.

          Generate a response

          curl http://localhost:11434/api/generate -d '{

          "model": "llama3.2",

          "prompt":"Why is the sky blue?"

          }'

          Chat with a model

          curl http://localhost:11434/api/chat -d '{

          "model": "llama3.2",

          "messages": [

          { "role": "user", "content": "why is the sky blue?" }

          ]

          }'

          See the API documentation for all endpoints.

          Community Integrations

          Web & Desktop

          Cloud

          Terminal

          Apple Vision Pro

          Database

          • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)

          • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
          • chromem-go with example
          • Kangaroo (AI-powered SQL client and admin tool for popular databases)

          Package managers

          Libraries

          Mobile

          • Enchanted
          • Maid
          • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
          • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

          Extensions & Plugins

          Supported backends

          • llama.cpp project founded by Georgi Gerganov.

          Observability

          • Lunary is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
          • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
          • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
          • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
          • MLflow Tracing is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.

          瀏覽 6
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  操操片| 俺来也成人免费视频 | www.色色五月天 | 亚洲va高清 | 成人性爱在线观看 |