<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          R語言中的Theil-Sen回歸分析

          共 2561字,需瀏覽 6分鐘

           ·

          2024-04-12 04:12


              
          來源:拓端數(shù)據(jù)部落
          本文約1000字,建議閱讀5分鐘
          Theil-Sen估計器是一種在社會科學(xué)中不常用的簡單線性回歸估計器。


          • 在數(shù)據(jù)中所有點之間繪制一條線

          • 計算每條線的斜率

          • 中位數(shù)斜率是回歸斜率


          用這種方法計算斜率非??煽?。當(dāng)誤差呈正態(tài)分布且沒有異常值時,斜率與OLS非常相似。


          相關(guān)視頻


          有幾種獲取截距的方法。如果關(guān)心回歸中的截距,那么知道軟件在做什么是很合理的。


          當(dāng)我對異常值和異方差性有擔(dān)憂時,請在上方針對Theil-Sen進(jìn)行簡單線性回歸的評論。


          我進(jìn)行了一次模擬,以了解Theil-Sen如何在異方差下與OLS比較。它是更有效的估計器。


          library(simglm)library(ggplot2)library(dplyr)library(WRS)
          # HeteronRep <- 100n.s <- c(seq(50, 300, 50), 400, 550, 750, 1000)samp.dat <- sample((1:(nRep*length(n.s))), 25)lm.coefs.0 <- matrix(ncol = 3, nrow = nRep*length(n.s))ts.coefs.0 <- matrix(ncol = 3, nrow = nRep*length(n.s))lmt.coefs.0 <- matrix(ncol = 3, nrow = nRep*length(n.s))dat.s <- list()


          ggplot(dat.frms.0, aes(x = age, y = sim_data)) + geom_point(shape = 1, size = .5) + geom_smooth(method = "lm", se = FALSE) + facet_wrap(~ random.sample, nrow = 5) + labs(x = "Predictor", y = "Outcome", title = "Random sample of 25 datasets from 15000 datasets for simulation", subtitle = "Heteroscedastic relationships")



          ggplot(coefs.0, aes(x = n, colour = Estimator)) +  geom_boxplot(    aes(ymin = q025, lower = q25, middle = q50, upper = q75, ymax = q975), data = summarise(      group_by(coefs.0, n, Estimator), q025 = quantile(Slope, .025),      q25 = quantile(Slope, .25), q50 = quantile(Slope, .5),      q75 = quantile(Slope, .75), q975 = quantile(Slope, .975)), stat = "identity") +  geom_hline(yintercept = 2, linetype = 2) + scale_y_continuous(breaks = seq(1, 3, .05)) +  labs(x = "Sample size", y = "Slope",       title = "Estimation of regression slope in simple linear regression under heteroscedasticity",       subtitle = "1500 replications - Population slope is 2",       caption = paste(         "Boxes are IQR, whiskers are middle 95% of slopes",         "Both estimators are unbiased in the long run, however, OLS has higher variability",         sep = "\n"       ))



          原文鏈接:http://tecdat.cn/?p=10080


          編輯:于騰凱

          校對:亦霖

          瀏覽 44
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  看国产片日逼的 | 波多野成人无码精品视频 | 97成人片| 欧美老妇性XX | 影音先锋无码资源 |