PyTorch常用代碼段合集
點(diǎn)擊上方“小白學(xué)視覺”,選擇加"星標(biāo)"或“置頂”
重磅干貨,第一時(shí)間送達(dá)
本文轉(zhuǎn)自:視學(xué)算法
導(dǎo)讀
本文是PyTorch常用代碼段合集,涵蓋基本配置、張量處理、模型定義與操作、數(shù)據(jù)處理、模型訓(xùn)練與測試等5個(gè)方面,還給出了多個(gè)值得注意的Tips,內(nèi)容非常全面。
PyTorch最好的資料是官方文檔。本文是PyTorch常用代碼段,在參考資料[1](張皓:PyTorch Cookbook)的基礎(chǔ)上做了一些修補(bǔ),方便使用時(shí)查閱。
導(dǎo)入包和版本查詢
import torchimport torch.nn as nnimport torchvisionprint(torch.__version__)print(torch.version.cuda)print(torch.backends.cudnn.version())print(torch.cuda.get_device_name(0))
可復(fù)現(xiàn)性
在硬件設(shè)備(CPU、GPU)不同時(shí),完全的可復(fù)現(xiàn)性無法保證,即使隨機(jī)種子相同。但是,在同一個(gè)設(shè)備上,應(yīng)該保證可復(fù)現(xiàn)性。具體做法是,在程序開始的時(shí)候固定torch的隨機(jī)種子,同時(shí)也把numpy的隨機(jī)種子固定。
np.random.seed(0)torch.manual_seed(0)torch.cuda.manual_seed_all(0)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = False
顯卡設(shè)置
如果只需要一張顯卡
# Device configurationdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
如果需要指定多張顯卡,比如0,1號(hào)顯卡。
import osos.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
也可以在命令行運(yùn)行代碼時(shí)設(shè)置顯卡:
CUDA_VISIBLE_DEVICES=0,1 python train.py清除顯存
torch.cuda.empty_cache()也可以使用在命令行重置GPU的指令
nvidia-smi --gpu-reset -i [gpu_id張量的數(shù)據(jù)類型
PyTorch有9種CPU張量類型和9種GPU張量類型。

張量基本信息
tensor = torch.randn(3,4,5)print(tensor.type()) # 數(shù)據(jù)類型print(tensor.size()) # 張量的shape,是個(gè)元組print(tensor.dim()) # 維度的數(shù)量
命名張量
張量命名是一個(gè)非常有用的方法,這樣可以方便地使用維度的名字來做索引或其他操作,大大提高了可讀性、易用性,防止出錯(cuò)。
# 在PyTorch 1.3之前,需要使用注釋# Tensor[N, C, H, W]images = torch.randn(32, 3, 56, 56)images.sum(dim=1)images.select(dim=1, index=0)# PyTorch 1.3之后NCHW = [‘N’, ‘C’, ‘H’, ‘W’]images = torch.randn(32, 3, 56, 56, names=NCHW)images.sum('C')images.select('C', index=0)# 也可以這么設(shè)置tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))# 使用align_to可以對(duì)維度方便地排序tensor = tensor.align_to('N', 'C', 'H', 'W')
數(shù)據(jù)類型轉(zhuǎn)換
# 設(shè)置默認(rèn)類型,pytorch中的FloatTensor遠(yuǎn)遠(yuǎn)快于DoubleTensortorch.set_default_tensor_type(torch.FloatTensor)# 類型轉(zhuǎn)換tensor = tensor.cuda()tensor = tensor.cpu()tensor = tensor.float()tensor = tensor.long()
torch.Tensor與np.ndarray轉(zhuǎn)換
除了CharTensor,其他所有CPU上的張量都支持轉(zhuǎn)換為numpy格式然后再轉(zhuǎn)換回來。
ndarray = tensor.cpu().numpy()tensor = torch.from_numpy(ndarray).float()tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.
Torch.tensor與PIL.Image轉(zhuǎn)換
# pytorch中的張量默認(rèn)采用[N, C, H, W]的順序,并且數(shù)據(jù)范圍在[0,1],需要進(jìn)行轉(zhuǎn)置和規(guī)范化# torch.Tensor -> PIL.Imageimage = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way# PIL.Image -> torch.Tensorpath = r'./figure.jpg'tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way
np.ndarray與PIL.Image的轉(zhuǎn)換
image = PIL.Image.fromarray(ndarray.astype(np.uint8))ndarray = np.asarray(PIL.Image.open(path))
從只包含一個(gè)元素的張量中提取值
value = torch.rand(1).item()張量形變
# 在將卷積層輸入全連接層的情況下通常需要對(duì)張量做形變處理,# 相比torch.view,torch.reshape可以自動(dòng)處理輸入張量不連續(xù)的情況。tensor = torch.rand(2,3,4)shape = (6, 4)tensor = torch.reshape(tensor, shape)
打亂順序
tensor = tensor[torch.randperm(tensor.size(0))] # 打亂第一個(gè)維度水平翻轉(zhuǎn)
# pytorch不支持tensor[::-1]這樣的負(fù)步長操作,水平翻轉(zhuǎn)可以通過張量索引實(shí)現(xiàn)# 假設(shè)張量的維度為[N, D, H, W].tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]
復(fù)制張量
# Operation | New/Shared memory | Still in computation graph |tensor.clone() # | New | Yes |tensor.detach() # | Shared | No |tensor.detach.clone()() # | New | No |
張量拼接
'''注意torch.cat和torch.stack的區(qū)別在于torch.cat沿著給定的維度拼接,而torch.stack會(huì)新增一維。例如當(dāng)參數(shù)是3個(gè)10x5的張量,torch.cat的結(jié)果是30x5的張量,而torch.stack的結(jié)果是3x10x5的張量。'''tensor = torch.cat(list_of_tensors, dim=0)tensor = torch.stack(list_of_tensors, dim=0)
將整數(shù)標(biāo)簽轉(zhuǎn)為one-hot編碼
# pytorch的標(biāo)記默認(rèn)從0開始tensor = torch.tensor([0, 2, 1, 3])N = tensor.size(0)num_classes = 4one_hot = torch.zeros(N, num_classes).long()one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
得到非零元素
torch.nonzero(tensor) # index of non-zero elementstorch.nonzero(tensor==0) # index of zero elementstorch.nonzero(tensor).size(0) # number of non-zero elementstorch.nonzero(tensor == 0).size(0) # number of zero elements
判斷兩個(gè)張量相等
torch.allclose(tensor1, tensor2) # float tensortorch.equal(tensor1, tensor2) # int tensor
張量擴(kuò)展
# Expand tensor of shape 64*512 to shape 64*512*7*7.tensor = torch.rand(64,512)torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
矩陣乘法
# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).result = torch.mm(tensor1, tensor2)# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)result = torch.bmm(tensor1, tensor2)# Element-wise multiplication.result = tensor1 * tensor2
計(jì)算兩組數(shù)據(jù)之間的兩兩歐式距離
利用broadcast機(jī)制
dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))一個(gè)簡單兩層卷積網(wǎng)絡(luò)的示例
# convolutional neural network (2 convolutional layers)class ConvNet(nn.Module):def __init__(self, num_classes=10):super(ConvNet, self).__init__()self.layer1 = nn.Sequential(nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(16),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.layer2 = nn.Sequential(nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(32),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.fc = nn.Linear(7*7*32, num_classes)def forward(self, x):out = self.layer1(x)out = self.layer2(out)out = out.reshape(out.size(0), -1)out = self.fc(out)return outmodel = ConvNet(num_classes).to(device)
卷積層的計(jì)算和展示可以用這個(gè)網(wǎng)站輔助。
雙線性匯合(bilinear pooling)
X = torch.reshape(N, D, H * W) # Assume X has shape N*D*H*WX = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W) # Bilinear poolingassert X.size() == (N, D, D)X = torch.reshape(X, (N, D * D))X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5) # Signed-sqrt normalizationX = torch.nn.functional.normalize(X) # L2 normalization
多卡同步 BN(Batch normalization)
當(dāng)使用 torch.nn.DataParallel 將代碼運(yùn)行在多張 GPU 卡上時(shí),PyTorch 的 BN 層默認(rèn)操作是各卡上數(shù)據(jù)獨(dú)立地計(jì)算均值和標(biāo)準(zhǔn)差,同步 BN 使用所有卡上的數(shù)據(jù)一起計(jì)算 BN 層的均值和標(biāo)準(zhǔn)差,緩解了當(dāng)批量大?。╞atch size)比較小時(shí)對(duì)均值和標(biāo)準(zhǔn)差估計(jì)不準(zhǔn)的情況,是在目標(biāo)檢測等任務(wù)中一個(gè)有效的提升性能的技巧。
sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
將已有網(wǎng)絡(luò)的所有BN層改為同步BN層
def convertBNtoSyncBN(module, process_group=None):'''Recursively replace all BN layers to SyncBN layer.Args:module[torch.nn.Module]. Network'''if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum,module.affine, module.track_running_stats, process_group)sync_bn.running_mean = module.running_meansync_bn.running_var = module.running_varif module.affine:sync_bn.weight = module.weight.clone().detach()sync_bn.bias = module.bias.clone().detach()return sync_bnelse:for name, child_module in module.named_children():setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))return module
類似 BN 滑動(dòng)平均
如果要實(shí)現(xiàn)類似 BN 滑動(dòng)平均的操作,在 forward 函數(shù)中要使用原地(inplace)操作給滑動(dòng)平均賦值。
class BN(torch.nn.Module)def __init__(self):...self.register_buffer('running_mean', torch.zeros(num_features))def forward(self, X):...self.running_mean += momentum * (current - self.running_mean)
計(jì)算模型整體參數(shù)量
num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())查看網(wǎng)絡(luò)中的參數(shù)
可以通過model.state_dict()或者model.named_parameters()函數(shù)查看現(xiàn)在的全部可訓(xùn)練參數(shù)(包括通過繼承得到的父類中的參數(shù))
params = list(model.named_parameters())(name, param) = params[28]print(name)print(param.grad)print('-------------------------------------------------')(name2, param2) = params[29]print(name2)print(param2.grad)print('----------------------------------------------------')(name1, param1) = params[30]print(name1)print(param1.grad)
模型可視化(使用pytorchviz)
szagoruyko/pytorchvizgithub.com
類似 Keras 的 model.summary() 輸出模型信息,使用pytorch-summary
sksq96/pytorch-summarygithub.com
模型權(quán)重初始化
注意 model.modules() 和 model.children() 的區(qū)別:model.modules() 會(huì)迭代地遍歷模型的所有子層,而 model.children() 只會(huì)遍歷模型下的一層。
# Common practise for initialization.for layer in model.modules():if isinstance(layer, torch.nn.Conv2d):torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',nonlinearity='relu')if layer.bias is not None:torch.nn.init.constant_(layer.bias, val=0.0)elif isinstance(layer, torch.nn.BatchNorm2d):torch.nn.init.constant_(layer.weight, val=1.0)torch.nn.init.constant_(layer.bias, val=0.0)elif isinstance(layer, torch.nn.Linear):torch.nn.init.xavier_normal_(layer.weight)if layer.bias is not None:torch.nn.init.constant_(layer.bias, val=0.0)# Initialization with given tensor.layer.weight = torch.nn.Parameter(tensor)
提取模型中的某一層
modules()會(huì)返回模型中所有模塊的迭代器,它能夠訪問到最內(nèi)層,比如self.layer1.conv1這個(gè)模塊,還有一個(gè)與它們相對(duì)應(yīng)的是name_children()屬性以及named_modules(),這兩個(gè)不僅會(huì)返回模塊的迭代器,還會(huì)返回網(wǎng)絡(luò)層的名字。
# 取模型中的前兩層new_model = nn.Sequential(*list(model.children())[:2]# 如果希望提取出模型中的所有卷積層,可以像下面這樣操作:for layer in model.named_modules():if isinstance(layer[1],nn.Conv2d):conv_model.add_module(layer[0],layer[1])
部分層使用預(yù)訓(xùn)練模型
注意如果保存的模型是 torch.nn.DataParallel,則當(dāng)前的模型也需要是
model.load_state_dict(torch.load('model.pth'), strict=False)將在 GPU 保存的模型加載到 CPU
model.load_state_dict(torch.load('model.pth', map_location='cpu'))導(dǎo)入另一個(gè)模型的相同部分到新的模型
模型導(dǎo)入?yún)?shù)時(shí),如果兩個(gè)模型結(jié)構(gòu)不一致,則直接導(dǎo)入?yún)?shù)會(huì)報(bào)錯(cuò)。用下面方法可以把另一個(gè)模型的相同的部分導(dǎo)入到新的模型中。
# model_new代表新的模型# model_saved代表其他模型,比如用torch.load導(dǎo)入的已保存的模型model_new_dict = model_new.state_dict()model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()}model_new_dict.update(model_common_dict)model_new.load_state_dict(model_new_dict)
計(jì)算數(shù)據(jù)集的均值和標(biāo)準(zhǔn)差
import osimport cv2import numpy as npfrom torch.utils.data import Datasetfrom PIL import Imagedef compute_mean_and_std(dataset):# 輸入PyTorch的dataset,輸出均值和標(biāo)準(zhǔn)差mean_r = 0mean_g = 0mean_b = 0for img, _ in dataset:img = np.asarray(img) # change PIL Image to numpy arraymean_b += np.mean(img[:, :, 0])mean_g += np.mean(img[:, :, 1])mean_r += np.mean(img[:, :, 2])mean_b /= len(dataset)mean_g /= len(dataset)mean_r /= len(dataset)diff_r = 0diff_g = 0diff_b = 0N = 0for img, _ in dataset:img = np.asarray(img)diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))N += np.prod(img[:, :, 0].shape)std_b = np.sqrt(diff_b / N)std_g = np.sqrt(diff_g / N)std_r = np.sqrt(diff_r / N)mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)return mean, std
得到視頻數(shù)據(jù)基本信息
import cv2video = cv2.VideoCapture(mp4_path)height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))fps = int(video.get(cv2.CAP_PROP_FPS))video.release()
TSN 每段(segment)采樣一幀視頻
K = self._num_segmentsif is_train:if num_frames > K:# Random index for each segment.frame_indices = torch.randint(high=num_frames // K, size=(K,), dtype=torch.long)frame_indices += num_frames // K * torch.arange(K)else:frame_indices = torch.randint(high=num_frames, size=(K - num_frames,), dtype=torch.long)frame_indices = torch.sort(torch.cat((torch.arange(num_frames), frame_indices)))[0]else:if num_frames > K:# Middle index for each segment.frame_indices = num_frames / K // 2frame_indices += num_frames // K * torch.arange(K)else:frame_indices = torch.sort(torch.cat((torch.arange(num_frames), torch.arange(K - num_frames))))[0]assert frame_indices.size() == (K,)return [frame_indices[i] for i in range(K)]
常用訓(xùn)練和驗(yàn)證數(shù)據(jù)預(yù)處理
其中 ToTensor 操作會(huì)將 PIL.Image 或形狀為 H×W×D,數(shù)值范圍為 [0, 255] 的 np.ndarray 轉(zhuǎn)換為形狀為 D×H×W,數(shù)值范圍為 [0.0, 1.0] 的 torch.Tensor。
train_transform = torchvision.transforms.Compose([torchvision.transforms.RandomResizedCrop(size=224,scale=(0.08, 1.0)),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),])val_transform = torchvision.transforms.Compose([torchvision.transforms.Resize(256),torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),])
分類模型訓(xùn)練代碼
# Loss and optimizercriterion = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# Train the modeltotal_step = len(train_loader)for epoch in range(num_epochs):for i ,(images, labels) in enumerate(train_loader):images = images.to(device)labels = labels.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, labels)# Backward and optimizeroptimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 100 == 0:print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
分類模型測試代碼
# Test the modelmodel.eval() # eval mode(batch norm uses moving mean/variance#instead of mini-batch mean/variance)with torch.no_grad():correct = 0total = 0for images, labels in test_loader:images = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Test accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
自定義loss
繼承torch.nn.Module類寫自己的loss。
class MyLoss(torch.nn.Moudle):def __init__(self):super(MyLoss, self).__init__()def forward(self, x, y):loss = torch.mean((x - y) ** 2)return loss
標(biāo)簽平滑(label smoothing)
寫一個(gè)label_smoothing.py的文件,然后在訓(xùn)練代碼里引用,用LSR代替交叉熵?fù)p失即可。label_smoothing.py內(nèi)容如下:
import torchimport torch.nn as nnclass LSR(nn.Module):def __init__(self, e=0.1, reduction='mean'):super().__init__()self.log_softmax = nn.LogSoftmax(dim=1)self.e = eself.reduction = reductiondef _one_hot(self, labels, classes, value=1):"""Convert labels to one hot vectorsArgs:labels: torch tensor in format [label1, label2, label3, ...]classes: int, number of classesvalue: label value in one hot vector, default to 1Returns:return one hot format labels in shape [batchsize, classes]"""one_hot = torch.zeros(labels.size(0), classes)#labels and value_added size must matchlabels = labels.view(labels.size(0), -1)value_added = torch.Tensor(labels.size(0), 1).fill_(value)value_added = value_added.to(labels.device)one_hot = one_hot.to(labels.device)one_hot.scatter_add_(1, labels, value_added)return one_hotdef _smooth_label(self, target, length, smooth_factor):"""convert targets to one-hot format, and smooththem.Args:target: target in form with [label1, label2, label_batchsize]length: length of one-hot format(number of classes)smooth_factor: smooth factor for label smoothReturns:smoothed labels in one hot format"""one_hot = self._one_hot(target, length, value=1 - smooth_factor)one_hot += smooth_factor / (length - 1)return one_hot.to(target.device)def forward(self, x, target):if x.size(0) != target.size(0):raise ValueError('Expected input batchsize ({}) to match target batch_size({})'.format(x.size(0), target.size(0)))if x.dim() < 2:raise ValueError('Expected input tensor to have least 2 dimensions(got {})'.format(x.size(0)))if x.dim() != 2:raise ValueError('Only 2 dimension tensor are implemented, (got {})'.format(x.size()))smoothed_target = self._smooth_label(target, x.size(1), self.e)x = self.log_softmax(x)loss = torch.sum(- x * smoothed_target, dim=1)if self.reduction == 'none':return losselif self.reduction == 'sum':return torch.sum(loss)elif self.reduction == 'mean':return torch.mean(loss)else:raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')
或者直接在訓(xùn)練文件里做label smoothing
for images, labels in train_loader:images, labels = images.cuda(), labels.cuda()N = labels.size(0)# C is the number of classes.smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)score = model(images)log_prob = torch.nn.functional.log_softmax(score, dim=1)loss = -torch.sum(log_prob * smoothed_labels) / Noptimizer.zero_grad()loss.backward()optimizer.step()
Mixup訓(xùn)練
beta_distribution = torch.distributions.beta.Beta(alpha, alpha)for images, labels in train_loader:images, labels = images.cuda(), labels.cuda()# Mixup images and labels.lambda_ = beta_distribution.sample([]).item()index = torch.randperm(images.size(0)).cuda()mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]label_a, label_b = labels, labels[index]# Mixup loss.scores = model(mixed_images)loss = (lambda_ * loss_function(scores, label_a)+ (1 - lambda_) * loss_function(scores, label_b))optimizer.zero_grad()loss.backward()optimizer.step()
L1 正則化
l1_regularization = torch.nn.L1Loss(reduction='sum')loss = ... # Standard cross-entropy lossfor param in model.parameters():loss += torch.sum(torch.abs(param))loss.backward()
不對(duì)偏置項(xiàng)進(jìn)行權(quán)重衰減(weight decay)
pytorch里的weight decay相當(dāng)于l2正則
bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')parameters = [{'parameters': bias_list, 'weight_decay': 0},{'parameters': others_list}]optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
梯度裁剪(gradient clipping)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)得到當(dāng)前學(xué)習(xí)率
# If there is one global learning rate (which is the common case).lr = next(iter(optimizer.param_groups))['lr']# If there are multiple learning rates for different layers.all_lr = []for param_group in optimizer.param_groups:all_lr.append(param_group['lr'])
另一種方法,在一個(gè)batch訓(xùn)練代碼里,當(dāng)前的lr是optimizer.param_groups[0]['lr']
學(xué)習(xí)率衰減
# Reduce learning rate when validation accuarcy plateau.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)for t in range(0, 80):train(...)val(...)scheduler.step(val_acc)# Cosine annealing learning rate.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)# Reduce learning rate by 10 at given epochs.scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)for t in range(0, 80):scheduler.step()train(...)val(...)# Learning rate warmup by 10 epochs.scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)for t in range(0, 10):scheduler.step()train(...)val(...)
優(yōu)化器鏈?zhǔn)礁?/h3>
從1.4版本開始,torch.optim.lr_scheduler 支持鏈?zhǔn)礁拢╟haining),即用戶可以定義兩個(gè) schedulers,并交替在訓(xùn)練中使用。
import torchfrom torch.optim import SGDfrom torch.optim.lr_scheduler import ExponentialLR, StepLRmodel = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]optimizer = SGD(model, 0.1)scheduler1 = ExponentialLR(optimizer, gamma=0.9)scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)for epoch in range(4):print(epoch, scheduler2.get_last_lr()[0])optimizer.step()scheduler1.step()scheduler2.step()
模型訓(xùn)練可視化
PyTorch可以使用tensorboard來可視化訓(xùn)練過程。
安裝和運(yùn)行TensorBoard。
pip install tensorboardtensorboard --logdir=runs
使用SummaryWriter類來收集和可視化相應(yīng)的數(shù)據(jù),放了方便查看,可以使用不同的文件夾,比如'Loss/train'和'Loss/test'。
from torch.utils.tensorboard import SummaryWriterimport numpy as npwriter = SummaryWriter()for n_iter in range(100):writer.add_scalar('Loss/train', np.random.random(), n_iter)writer.add_scalar('Loss/test', np.random.random(), n_iter)writer.add_scalar('Accuracy/train', np.random.random(), n_iter)writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
保存與加載斷點(diǎn)
注意為了能夠恢復(fù)訓(xùn)練,我們需要同時(shí)保存模型和優(yōu)化器的狀態(tài),以及當(dāng)前的訓(xùn)練輪數(shù)。
start_epoch = 0# Load checkpoint.if resume: # resume為參數(shù),第一次訓(xùn)練時(shí)設(shè)為0,中斷再訓(xùn)練時(shí)設(shè)為1model_path = os.path.join('model', 'best_checkpoint.pth.tar')assert os.path.isfile(model_path)checkpoint = torch.load(model_path)best_acc = checkpoint['best_acc']start_epoch = checkpoint['epoch']model.load_state_dict(checkpoint['model'])optimizer.load_state_dict(checkpoint['optimizer'])print('Load checkpoint at epoch {}.'.format(start_epoch))print('Best accuracy so far {}.'.format(best_acc))# Train the modelfor epoch in range(start_epoch, num_epochs):...# Test the model...# save checkpointis_best = current_acc > best_accbest_acc = max(current_acc, best_acc)checkpoint = {'best_acc': best_acc,'epoch': epoch + 1,'model': model.state_dict(),'optimizer': optimizer.state_dict(),}model_path = os.path.join('model', 'checkpoint.pth.tar')best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')torch.save(checkpoint, model_path)if is_best:shutil.copy(model_path, best_model_path)
提取 ImageNet 預(yù)訓(xùn)練模型某層的卷積特征
# VGG-16 relu5-3 feature.model = torchvision.models.vgg16(pretrained=True).features[:-1]# VGG-16 pool5 feature.model = torchvision.models.vgg16(pretrained=True).features# VGG-16 fc7 feature.model = torchvision.models.vgg16(pretrained=True)model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])# ResNet GAP feature.model = torchvision.models.resnet18(pretrained=True)model = torch.nn.Sequential(collections.OrderedDict(list(model.named_children())[:-1]))with torch.no_grad():model.eval()conv_representation = model(image)
提取 ImageNet 預(yù)訓(xùn)練模型多層的卷積特征
class FeatureExtractor(torch.nn.Module):"""Helper class to extract several convolution features from the givenpre-trained model.Attributes:_model, torch.nn.Module._layers_to_extract, list<str> or set<str>Example:>>> model = torchvision.models.resnet152(pretrained=True)>>> model = torch.nn.Sequential(collections.OrderedDict(list(model.named_children())[:-1]))>>> conv_representation = FeatureExtractor(pretrained_model=model,layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)"""def __init__(self, pretrained_model, layers_to_extract):torch.nn.Module.__init__(self)self._model = pretrained_modelself._model.eval()self._layers_to_extract = set(layers_to_extract)def forward(self, x):with torch.no_grad():conv_representation = []for name, layer in self._model.named_children():x = layer(x)if name in self._layers_to_extract:conv_representation.append(x)return conv_representation
微調(diào)全連接層
model = torchvision.models.resnet18(pretrained=True)for param in model.parameters():param.requires_grad = Falsemodel.fc = nn.Linear(512, 100) # Replace the last fc layeroptimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)
以較大學(xué)習(xí)率微調(diào)全連接層,較小學(xué)習(xí)率微調(diào)卷積層
model = torchvision.models.resnet18(pretrained=True)finetuned_parameters = list(map(id, model.fc.parameters()))conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)parameters = [{'params': conv_parameters, 'lr': 1e-3},{'params': model.fc.parameters()}]optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
6. 其他注意事項(xiàng)
x = torch.nn.functional.relu(x, inplace=True)with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile: ...print(profile)# 或者在命令行運(yùn)行python -m torch.utils.bottleneck main.py# pip install torchsnooperimport torchsnooper# 對(duì)于函數(shù),使用修飾器@torchsnooper.snoop()# 如果不是函數(shù),使用 with 語句來激活 TorchSnooper,把訓(xùn)練的那個(gè)循環(huán)裝進(jìn) with 語句中去。with torchsnooper.snoop(): 原本的代碼交流群
歡迎加入公眾號(hào)讀者群一起和同行交流,目前有SLAM、三維視覺、傳感器、自動(dòng)駕駛、計(jì)算攝影、檢測、分割、識(shí)別、醫(yī)學(xué)影像、GAN、算法競賽等微信群(以后會(huì)逐漸細(xì)分),請(qǐng)掃描下面微信號(hào)加群,備注:”昵稱+學(xué)校/公司+研究方向“,例如:”張三 + 上海交大 + 視覺SLAM“。請(qǐng)按照格式備注,否則不予通過。添加成功后會(huì)根據(jù)研究方向邀請(qǐng)進(jìn)入相關(guān)微信群。請(qǐng)勿在群內(nèi)發(fā)送廣告,否則會(huì)請(qǐng)出群,謝謝理解~

