<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          Redis(六):list/lpush/lrange/lpop 命令源碼解析

          共 54974字,需瀏覽 110分鐘

           ·

          2021-03-04 08:21

          走過路過不要錯(cuò)過

          點(diǎn)擊藍(lán)字關(guān)注我們


          上一篇講了hash數(shù)據(jù)類型的相關(guān)實(shí)現(xiàn)方法,沒有茅塞頓開也至少知道redis如何搞事情的了吧。

          本篇咱們繼續(xù)來看redis中的數(shù)據(jù)類型的實(shí)現(xiàn): list 相關(guān)操作實(shí)現(xiàn)。

          同樣,我們以使用者的角度,開始理解list提供的功能,相應(yīng)的數(shù)據(jù)結(jié)構(gòu)承載,再到具體實(shí)現(xiàn),以這樣一個(gè)思路來理解redis之list。

          零、redis list相關(guān)操作方法

          從官方的手冊(cè)中可以查到相關(guān)的使用方法。

          1> BLPOP key1 [key2] timeout
          功能: 移出并獲取列表的第一個(gè)元素, 如果列表沒有元素會(huì)阻塞列表直到等待超時(shí)或發(fā)現(xiàn)可彈出元素為止。(LPOP的阻塞版本)
          返回值: 獲取到元素的key和被彈出的元素值

          2> BRPOP key1 [key2 ] timeout
          功能: 移出并獲取列表的最后一個(gè)元素, 如果列表沒有元素會(huì)阻塞列表直到等待超時(shí)或發(fā)現(xiàn)可彈出元素為止。(RPOP 的阻塞版本)
          返回值: 獲取到元素的key和被彈出的元素值

          3> BRPOPLPUSH source destination timeout
          功能: 從列表中彈出一個(gè)值,將彈出的元素插入到另外一個(gè)列表中并返回它;如果列表沒有元素會(huì)阻塞列表直到等待超時(shí)或發(fā)現(xiàn)可彈出元素為止。(RPOPLPUSH 的阻塞版本)
          返回值: 被轉(zhuǎn)移的元素值或者為nil

          4> LINDEX key index
          功能: 通過索引獲取列表中的元素
          返回值: 查找到的元素值,超出范圍時(shí)返回nil

          5> LINSERT key BEFORE|AFTER pivot value
          功能: 在列表的元素前或者后插入元素
          返回值: 插入后的list長(zhǎng)度

          6> LLEN key
          功能: 獲取列表長(zhǎng)度
          返回值: 列表長(zhǎng)度

          7> LPOP key
          功能: 移出并獲取列表的第一個(gè)元素
          返回值: 第一個(gè)元素或者nil

          8> LPUSH key value1 [value2]
          功能: 將一個(gè)或多個(gè)值插入到列表頭部
          返回值: 插入后的list長(zhǎng)度

          9> LPUSHX key value
          將一個(gè)值插入到已存在的列表頭部,如果key不存在則不做任何操作
          返回值: 插入后的list長(zhǎng)度

          10> LRANGE key start stop
          功能: 獲取列表指定范圍內(nèi)的元素 (包含起止邊界)
          返回值: 值列表

          11> LREM key count value
          功能: 移除列表元素, count>0:移除正向匹配的count個(gè)元素,count<0:移除逆向匹配的count個(gè)元素, count=0,只移除匹配的元素
          返回值: 移除的元素個(gè)數(shù)

          12> LSET key index value
          功能: 通過索引設(shè)置列表元素的值
          返回值: OK or err

          13> LTRIM key start stop
          功能: 對(duì)一個(gè)列表進(jìn)行修剪(trim),就是說,讓列表只保留指定區(qū)間內(nèi)的元素,不在指定區(qū)間之內(nèi)的元素都將被刪除。
          返回值: OK

          14> RPOP key
          功能: 移除列表的最后一個(gè)元素,返回值為移除的元素。
          返回值: 最后一個(gè)元素值或者nil

          15> RPOPLPUSH source destination
          功能: 移除列表的最后一個(gè)元素,并將該元素添加到另一個(gè)列表并返回
          返回值: 被轉(zhuǎn)移的元素

          16> RPUSH key value1 [value2]
          功能: 在列表中添加一個(gè)或多個(gè)值
          返回值: 插入后的list長(zhǎng)度

          17> RPUSHX key value
          功能: 為已存在的列表添加值
          返回值: 插入后的list長(zhǎng)度

          redis中的實(shí)現(xiàn)方法定義如下:

              {"rpush",rpushCommand,-3,"wmF",0,NULL,1,1,1,0,0},    {"lpush",lpushCommand,-3,"wmF",0,NULL,1,1,1,0,0},    {"rpushx",rpushxCommand,3,"wmF",0,NULL,1,1,1,0,0},    {"lpushx",lpushxCommand,3,"wmF",0,NULL,1,1,1,0,0},    {"linsert",linsertCommand,5,"wm",0,NULL,1,1,1,0,0},    {"rpop",rpopCommand,2,"wF",0,NULL,1,1,1,0,0},    {"lpop",lpopCommand,2,"wF",0,NULL,1,1,1,0,0},    {"brpop",brpopCommand,-3,"ws",0,NULL,1,1,1,0,0},    {"brpoplpush",brpoplpushCommand,4,"wms",0,NULL,1,2,1,0,0},    {"blpop",blpopCommand,-3,"ws",0,NULL,1,-2,1,0,0},    {"llen",llenCommand,2,"rF",0,NULL,1,1,1,0,0},    {"lindex",lindexCommand,3,"r",0,NULL,1,1,1,0,0},    {"lset",lsetCommand,4,"wm",0,NULL,1,1,1,0,0},    {"lrange",lrangeCommand,4,"r",0,NULL,1,1,1,0,0},    {"ltrim",ltrimCommand,4,"w",0,NULL,1,1,1,0,0},    {"lrem",lremCommand,4,"w",0,NULL,1,1,1,0,0},    {"rpoplpush",rpoplpushCommand,3,"wm",0,NULL,1,2,1,0,0},

          一、list相關(guān)數(shù)據(jù)結(jié)構(gòu)

          說到list或者說鏈表,我們能想到什么數(shù)據(jù)結(jié)構(gòu)呢?單向鏈表、雙向鏈表、循環(huán)鏈表... 好像都挺簡(jiǎn)單的,還有啥??我們來看下redis 的實(shí)現(xiàn):

          // quicklist 是其實(shí)數(shù)據(jù)容器,由head,tail 進(jìn)行迭代,所以算是一個(gè)雙向鏈表/* quicklist is a 32 byte struct (on 64-bit systems) describing a quicklist. * 'count' is the number of total entries. * 'len' is the number of quicklist nodes. * 'compress' is: -1 if compression disabled, otherwise it's the number *                of quicklistNodes to leave uncompressed at ends of quicklist. * 'fill' is the user-requested (or default) fill factor. */typedef struct quicklist {    // 頭節(jié)點(diǎn)    quicklistNode *head;    // 尾節(jié)點(diǎn)    quicklistNode *tail;    // 現(xiàn)有元素個(gè)數(shù)    unsigned long count;        /* total count of all entries in all ziplists */    // 現(xiàn)有的 quicklistNode 個(gè)數(shù),一個(gè) node 可能包含n個(gè)元素    unsigned int len;           /* number of quicklistNodes */    // 填充因子    int fill : 16;              /* fill factor for individual nodes */    // 多深的鏈表無需壓縮    unsigned int compress : 16; /* depth of end nodes not to compress;0=off */} quicklist;// 鏈表中的每個(gè)節(jié)點(diǎn)typedef struct quicklistEntry {    const quicklist *quicklist;    quicklistNode *node;    // 當(dāng)前迭代元素的ziplist的偏移位置指針    unsigned char *zi;    // 純粹的 value, 值來源 zi    unsigned char *value;    // 占用空間大小    unsigned int sz;    long long longval;    // 當(dāng)前節(jié)點(diǎn)偏移    int offset;} quicklistEntry;// 鏈表元素節(jié)點(diǎn)使用 quicklistNode /* quicklistNode is a 32 byte struct describing a ziplist for a quicklist. * We use bit fields keep the quicklistNode at 32 bytes. * count: 16 bits, max 65536 (max zl bytes is 65k, so max count actually < 32k). * encoding: 2 bits, RAW=1, LZF=2. * container: 2 bits, NONE=1, ZIPLIST=2. * recompress: 1 bit, bool, true if node is temporarry decompressed for usage. * attempted_compress: 1 bit, boolean, used for verifying during testing. * extra: 12 bits, free for future use; pads out the remainder of 32 bits */typedef struct quicklistNode {    struct quicklistNode *prev;    struct quicklistNode *next;    // zl 為ziplist鏈表,保存count個(gè)元素值    unsigned char *zl;    unsigned int sz;             /* ziplist size in bytes */    unsigned int count : 16;     /* count of items in ziplist */    unsigned int encoding : 2;   /* RAW==1 or LZF==2 */    unsigned int container : 2;  /* NONE==1 or ZIPLIST==2 */    unsigned int recompress : 1; /* was this node previous compressed? */    unsigned int attempted_compress : 1; /* node can't compress; too small */    unsigned int extra : 10; /* more bits to steal for future usage */} quicklistNode;// list迭代器typedef struct quicklistIter {    const quicklist *quicklist;    quicklistNode *current;    unsigned char *zi;    long offset; /* offset in current ziplist */    int direction;} quicklistIter;// ziplist 數(shù)據(jù)結(jié)構(gòu) typedef struct zlentry {    unsigned int prevrawlensize, prevrawlen;    unsigned int lensize, len;    unsigned int headersize;    unsigned char encoding;    unsigned char *p;} zlentry;

          二、rpush/lpush 新增元素操作實(shí)現(xiàn)

          rpush是所尾部添加元素,lpush是從頭部添加元素,本質(zhì)上都是一樣的,redis實(shí)際上也是完全復(fù)用一套代碼。

          // t_list.c, lpushvoid lpushCommand(client *c) {    // 使用 LIST_HEAD|LIST_TAIL 作為插入位置標(biāo)識(shí)    pushGenericCommand(c,LIST_HEAD);}void rpushCommand(client *c) {    pushGenericCommand(c,LIST_TAIL);}// t_list.c, 實(shí)際的push操作void pushGenericCommand(client *c, int where) {    int j, waiting = 0, pushed = 0;    // 在db中查找對(duì)應(yīng)的key實(shí)例,查到或者查不到    robj *lobj = lookupKeyWrite(c->db,c->argv[1]);    // 查到的情況下,需要驗(yàn)證數(shù)據(jù)類型    if (lobj && lobj->type != OBJ_LIST) {        addReply(c,shared.wrongtypeerr);        return;    }
          for (j = 2; j < c->argc; j++) { c->argv[j] = tryObjectEncoding(c->argv[j]); if (!lobj) { // 1. 在沒有key實(shí)例的情況下,先創(chuàng)建key實(shí)例到db中 lobj = createQuicklistObject(); // 2. 設(shè)置 fill和depth 參數(shù) // fill 默認(rèn): -2 // depth 默認(rèn): 0 quicklistSetOptions(lobj->ptr, server.list_max_ziplist_size, server.list_compress_depth); dbAdd(c->db,c->argv[1],lobj); } // 3. 一個(gè)個(gè)元素添加進(jìn)去 listTypePush(lobj,c->argv[j],where); pushed++; } // 返回list長(zhǎng)度 addReplyLongLong(c, waiting + (lobj ? listTypeLength(lobj) : 0)); if (pushed) { // 命令傳播 char *event = (where == LIST_HEAD) ? "lpush" : "rpush";
          signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_LIST,event,c->argv[1],c->db->id); } server.dirty += pushed;}// 1. 創(chuàng)建初始list// object.c, 創(chuàng)建初始listrobj *createQuicklistObject(void) { quicklist *l = quicklistCreate(); robj *o = createObject(OBJ_LIST,l); o->encoding = OBJ_ENCODING_QUICKLIST; return o;}// quicklist.c, 創(chuàng)建一個(gè)新的list容器,初始化默認(rèn)值/* Create a new quicklist. * Free with quicklistRelease(). */quicklist *quicklistCreate(void) { struct quicklist *quicklist;
          quicklist = zmalloc(sizeof(*quicklist)); quicklist->head = quicklist->tail = NULL; quicklist->len = 0; quicklist->count = 0; quicklist->compress = 0; quicklist->fill = -2; return quicklist;}
          // 2. 設(shè)置quicklist 的fill和depth 值// quicklist.cvoid quicklistSetOptions(quicklist *quicklist, int fill, int depth) { quicklistSetFill(quicklist, fill); quicklistSetCompressDepth(quicklist, depth);}// quicklist.c, 設(shè)置 fill 參數(shù)void quicklistSetFill(quicklist *quicklist, int fill) { if (fill > FILL_MAX) { fill = FILL_MAX; } else if (fill < -5) { fill = -5; } quicklist->fill = fill;}// quicklist.c, 設(shè)置 depth 參數(shù)void quicklistSetCompressDepth(quicklist *quicklist, int compress) { if (compress > COMPRESS_MAX) { compress = COMPRESS_MAX; } else if (compress < 0) { compress = 0; } quicklist->compress = compress;}
          // 3. 將元素添加進(jìn)list中// t_list.c, /* The function pushes an element to the specified list object 'subject', * at head or tail position as specified by 'where'. * * There is no need for the caller to increment the refcount of 'value' as * the function takes care of it if needed. */void listTypePush(robj *subject, robj *value, int where) { if (subject->encoding == OBJ_ENCODING_QUICKLIST) { int pos = (where == LIST_HEAD) ? QUICKLIST_HEAD : QUICKLIST_TAIL; // 解碼value value = getDecodedObject(value); size_t len = sdslen(value->ptr); // 將value添加到鏈表中 quicklistPush(subject->ptr, value->ptr, len, pos); // 減小value的引用,如果是被解編碼后的對(duì)象,此時(shí)會(huì)將內(nèi)存釋放 decrRefCount(value); } else { serverPanic("Unknown list encoding"); }}// object.c/* Get a decoded version of an encoded object (returned as a new object). * If the object is already raw-encoded just increment the ref count. */robj *getDecodedObject(robj *o) { robj *dec; // OBJ_ENCODING_RAW,OBJ_ENCODING_EMBSTR 編碼直接返回,引用計(jì)數(shù)+1(原因是: 原始robj一個(gè)引用,轉(zhuǎn)換后的robj一個(gè)引用) if (sdsEncodedObject(o)) { incrRefCount(o); return o; } if (o->type == OBJ_STRING && o->encoding == OBJ_ENCODING_INT) { char buf[32]; // 整型轉(zhuǎn)換為字符型,返回string型的robj ll2string(buf,32,(long)o->ptr); dec = createStringObject(buf,strlen(buf)); return dec; } else { serverPanic("Unknown encoding type"); }}
          // quicklist.c, 添加value到鏈表中/* Wrapper to allow argument-based switching between HEAD/TAIL pop */void quicklistPush(quicklist *quicklist, void *value, const size_t sz, int where) { // 根據(jù)where決定添加到表頭還表尾 if (where == QUICKLIST_HEAD) { quicklistPushHead(quicklist, value, sz); } else if (where == QUICKLIST_TAIL) { quicklistPushTail(quicklist, value, sz); }}// quicklist.c, 添加表頭數(shù)據(jù)/* Add new entry to head node of quicklist. * * Returns 0 if used existing head. * Returns 1 if new head created. */int quicklistPushHead(quicklist *quicklist, void *value, size_t sz) { quicklistNode *orig_head = quicklist->head; // likely 對(duì)不同平臺(tái)處理 __builtin_expect(!!(x), 1), // 判斷是否允許插入元素,實(shí)際上是判斷 head 的ziplist空間是否已占滿, 沒有則直接往里面插入即可 // fill 默認(rèn): -2 // depth 默認(rèn): 0 if (likely( _quicklistNodeAllowInsert(quicklist->head, quicklist->fill, sz))) { // 3.1. 添加head節(jié)點(diǎn)的zl鏈表中, zl 為ziplist 鏈表節(jié)點(diǎn) quicklist->head->zl = ziplistPush(quicklist->head->zl, value, sz, ZIPLIST_HEAD); // 3.2. 更新頭節(jié)點(diǎn)size大小 quicklistNodeUpdateSz(quicklist->head); } else { // 如果head已占滿,則創(chuàng)建一個(gè)新的 quicklistNode 節(jié)點(diǎn)進(jìn)行插入 quicklistNode *node = quicklistCreateNode(); node->zl = ziplistPush(ziplistNew(), value, sz, ZIPLIST_HEAD);
          quicklistNodeUpdateSz(node); // 3.3. 插入新節(jié)點(diǎn)到head之前 _quicklistInsertNodeBefore(quicklist, quicklist->head, node); } // 將鏈表計(jì)數(shù)+1, 避免獲取總數(shù)時(shí)迭代計(jì)算 quicklist->count++; quicklist->head->count++; return (orig_head != quicklist->head);}// quicklist.c, 判斷是否允許插入元素REDIS_STATIC int _quicklistNodeAllowInsert(const quicklistNode *node, const int fill, const size_t sz) { if (unlikely(!node)) return 0;
          int ziplist_overhead; /* size of previous offset */ if (sz < 254) ziplist_overhead = 1; else ziplist_overhead = 5;
          /* size of forward offset */ if (sz < 64) ziplist_overhead += 1; else if (likely(sz < 16384)) ziplist_overhead += 2; else ziplist_overhead += 5;
          /* new_sz overestimates if 'sz' encodes to an integer type */ // 加上需要添加的新元素的長(zhǎng)度后,進(jìn)行閥值判定,如果在閥值內(nèi),則返回1,否則返回0 unsigned int new_sz = node->sz + sz + ziplist_overhead; // 使用fill參數(shù)判定 if (likely(_quicklistNodeSizeMeetsOptimizationRequirement(new_sz, fill))) return 1; else if (!sizeMeetsSafetyLimit(new_sz)) return 0; else if ((int)node->count < fill) return 1; else return 0;}// quicklist.c REDIS_STATIC int_quicklistNodeSizeMeetsOptimizationRequirement(const size_t sz, const int fill) { if (fill >= 0) return 0;
          size_t offset = (-fill) - 1; // /* Optimization levels for size-based filling */ // static const size_t optimization_level[] = {4096, 8192, 16384, 32768, 65536}; // offset < 5, offset 默認(rèn)將等于 1, sz <= 8292 if (offset < (sizeof(optimization_level) / sizeof(*optimization_level))) { if (sz <= optimization_level[offset]) { return 1; } else { return 0; } } else { return 0; }}// SIZE_SAFETY_LIMIT 8192#define sizeMeetsSafetyLimit(sz) ((sz) <= SIZE_SAFETY_LIMIT)
          // 3.1. 向每個(gè)鏈表節(jié)點(diǎn)中添加value, 實(shí)際是向 ziplist push 數(shù)據(jù)// ziplist.c, push *s 數(shù)據(jù)到 zl 中unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) { unsigned char *p; p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl); // 具體添加元素方法,有點(diǎn)復(fù)雜。簡(jiǎn)單點(diǎn)說就是 判斷容量、擴(kuò)容、按照ziplist協(xié)議添加元素 return __ziplistInsert(zl,p,s,slen);}// ziplist.c, 在hash的數(shù)據(jù)介紹時(shí)已詳細(xì)介紹/* Insert item at "p". */static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) { size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen; unsigned int prevlensize, prevlen = 0; size_t offset; int nextdiff = 0; unsigned char encoding = 0; long long value = 123456789; /* initialized to avoid warning. Using a value that is easy to see if for some reason we use it uninitialized. */ zlentry tail;
          /* Find out prevlen for the entry that is inserted. */ if (p[0] != ZIP_END) { ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); } else { unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl); if (ptail[0] != ZIP_END) { prevlen = zipRawEntryLength(ptail); } }
          /* See if the entry can be encoded */ if (zipTryEncoding(s,slen,&value,&encoding)) { /* 'encoding' is set to the appropriate integer encoding */ reqlen = zipIntSize(encoding); } else { /* 'encoding' is untouched, however zipEncodeLength will use the * string length to figure out how to encode it. */ reqlen = slen; } /* We need space for both the length of the previous entry and * the length of the payload. */ reqlen += zipPrevEncodeLength(NULL,prevlen); reqlen += zipEncodeLength(NULL,encoding,slen);
          /* When the insert position is not equal to the tail, we need to * make sure that the next entry can hold this entry's length in * its prevlen field. */ nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
          /* Store offset because a realloc may change the address of zl. */ offset = p-zl; zl = ziplistResize(zl,curlen+reqlen+nextdiff); p = zl+offset;
          /* Apply memory move when necessary and update tail offset. */ if (p[0] != ZIP_END) { /* Subtract one because of the ZIP_END bytes */ memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
          /* Encode this entry's raw length in the next entry. */ zipPrevEncodeLength(p+reqlen,reqlen);
          /* Update offset for tail */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
          /* When the tail contains more than one entry, we need to take * "nextdiff" in account as well. Otherwise, a change in the * size of prevlen doesn't have an effect on the *tail* offset. */ zipEntry(p+reqlen, &tail); if (p[reqlen+tail.headersize+tail.len] != ZIP_END) { ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff); } } else { /* This element will be the new tail. */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl); }
          /* When nextdiff != 0, the raw length of the next entry has changed, so * we need to cascade the update throughout the ziplist */ if (nextdiff != 0) { offset = p-zl; zl = __ziplistCascadeUpdate(zl,p+reqlen); p = zl+offset; }
          /* Write the entry */ p += zipPrevEncodeLength(p,prevlen); p += zipEncodeLength(p,encoding,slen); if (ZIP_IS_STR(encoding)) { memcpy(p,s,slen); } else { zipSaveInteger(p,value,encoding); } ZIPLIST_INCR_LENGTH(zl,1); return zl;}// 3.2. 更新node的size (實(shí)際占用內(nèi)存空間大小)// quicklist.c, 更新node的size, 其實(shí)就是重新統(tǒng)計(jì)node的ziplist長(zhǎng)度#define quicklistNodeUpdateSz(node) \ do { \ (node)->sz = ziplistBlobLen((node)->zl); \ } while (0)
          // 3.3. 添加新鏈表節(jié)點(diǎn)到head之前// quicklist.c, /* Wrappers for node inserting around existing node. */REDIS_STATIC void _quicklistInsertNodeBefore(quicklist *quicklist, quicklistNode *old_node, quicklistNode *new_node) { __quicklistInsertNode(quicklist, old_node, new_node, 0);}/* Insert 'new_node' after 'old_node' if 'after' is 1. * Insert 'new_node' before 'old_node' if 'after' is 0. * Note: 'new_node' is *always* uncompressed, so if we assign it to * head or tail, we do not need to uncompress it. */REDIS_STATIC void __quicklistInsertNode(quicklist *quicklist, quicklistNode *old_node, quicklistNode *new_node, int after) { if (after) { new_node->prev = old_node; if (old_node) { new_node->next = old_node->next; if (old_node->next) old_node->next->prev = new_node; old_node->next = new_node; } if (quicklist->tail == old_node) quicklist->tail = new_node; } else { // 插入new_node到old_node之前 new_node->next = old_node; if (old_node) { new_node->prev = old_node->prev; if (old_node->prev) old_node->prev->next = new_node; old_node->prev = new_node; } // 替換頭節(jié)點(diǎn)位置 if (quicklist->head == old_node) quicklist->head = new_node; } /* If this insert creates the only element so far, initialize head/tail. */ // 第一個(gè)元素 if (quicklist->len == 0) { quicklist->head = quicklist->tail = new_node; } // 壓縮list if (old_node) quicklistCompress(quicklist, old_node);
          quicklist->len++;}// quicklist.c, 壓縮list#define quicklistCompress(_ql, _node) \ do { \ if ((_node)->recompress) \ // recompress quicklistCompressNode((_node)); \ else \ // __quicklistCompress((_ql), (_node)); \ } while (0)// recompress /* Compress only uncompressed nodes. */#define quicklistCompressNode(_node) \ do { \ if ((_node) && (_node)->encoding == QUICKLIST_NODE_ENCODING_RAW) { \ __quicklistCompressNode((_node)); \ } \ } while (0)/* Compress the ziplist in 'node' and update encoding details. * Returns 1 if ziplist compressed successfully. * Returns 0 if compression failed or if ziplist too small to compress. */REDIS_STATIC int __quicklistCompressNode(quicklistNode *node) {#ifdef REDIS_TEST node->attempted_compress = 1;#endif
          /* Don't bother compressing small values */ if (node->sz < MIN_COMPRESS_BYTES) return 0;
          quicklistLZF *lzf = zmalloc(sizeof(*lzf) + node->sz);
          /* Cancel if compression fails or doesn't compress small enough */ // lzf 壓縮算法,有點(diǎn)復(fù)雜咯 if (((lzf->sz = lzf_compress(node->zl, node->sz, lzf->compressed, node->sz)) == 0) || lzf->sz + MIN_COMPRESS_IMPROVE >= node->sz) { /* lzf_compress aborts/rejects compression if value not compressable. */ zfree(lzf); return 0; } lzf = zrealloc(lzf, sizeof(*lzf) + lzf->sz); zfree(node->zl); node->zl = (unsigned char *)lzf; node->encoding = QUICKLIST_NODE_ENCODING_LZF; node->recompress = 0; return 1;}
          /* Force 'quicklist' to meet compression guidelines set by compress depth. * The only way to guarantee interior nodes get compressed is to iterate * to our "interior" compress depth then compress the next node we find. * If compress depth is larger than the entire list, we return immediately. */REDIS_STATIC void __quicklistCompress(const quicklist *quicklist, quicklistNode *node) { /* If length is less than our compress depth (from both sides), * we can't compress anything. */ if (!quicklistAllowsCompression(quicklist) || quicklist->len < (unsigned int)(quicklist->compress * 2)) return;
          #if 0 /* Optimized cases for small depth counts */ if (quicklist->compress == 1) { quicklistNode *h = quicklist->head, *t = quicklist->tail; quicklistDecompressNode(h); quicklistDecompressNode(t); if (h != node && t != node) quicklistCompressNode(node); return; } else if (quicklist->compress == 2) { quicklistNode *h = quicklist->head, *hn = h->next, *hnn = hn->next; quicklistNode *t = quicklist->tail, *tp = t->prev, *tpp = tp->prev; quicklistDecompressNode(h); quicklistDecompressNode(hn); quicklistDecompressNode(t); quicklistDecompressNode(tp); if (h != node && hn != node && t != node && tp != node) { quicklistCompressNode(node); } if (hnn != t) { quicklistCompressNode(hnn); } if (tpp != h) { quicklistCompressNode(tpp); } return; }#endif
          /* Iterate until we reach compress depth for both sides of the list.a * Note: because we do length checks at the *top* of this function, * we can skip explicit null checks below. Everything exists. */ quicklistNode *forward = quicklist->head; quicklistNode *reverse = quicklist->tail; int depth = 0; int in_depth = 0; while (depth++ < quicklist->compress) { // 解壓縮??? quicklistDecompressNode(forward); quicklistDecompressNode(reverse);
          if (forward == node || reverse == node) in_depth = 1;
          if (forward == reverse) return;
          forward = forward->next; reverse = reverse->prev; }
          if (!in_depth) quicklistCompressNode(node);
          if (depth > 2) { /* At this point, forward and reverse are one node beyond depth */ // 壓縮 quicklistCompressNode(forward); quicklistCompressNode(reverse); }}
          /* Decompress only compressed nodes. */#define quicklistDecompressNode(_node) \ do { \ if ((_node) && (_node)->encoding == QUICKLIST_NODE_ENCODING_LZF) { \ __quicklistDecompressNode((_node)); \ } \ } while (0)/* Uncompress the ziplist in 'node' and update encoding details. * Returns 1 on successful decode, 0 on failure to decode. */REDIS_STATIC int __quicklistDecompressNode(quicklistNode *node) {#ifdef REDIS_TEST node->attempted_compress = 0;#endif
          void *decompressed = zmalloc(node->sz); quicklistLZF *lzf = (quicklistLZF *)node->zl; if (lzf_decompress(lzf->compressed, lzf->sz, decompressed, node->sz) == 0) { /* Someone requested decompress, but we can't decompress. Not good. */ zfree(decompressed); return 0; } zfree(lzf); node->zl = decompressed; node->encoding = QUICKLIST_NODE_ENCODING_RAW; return 1;}

          總體來說,redis的list實(shí)現(xiàn)不是純粹的單雙向鏈表,而是 使用雙向鏈表+ziplist 的方式實(shí)現(xiàn)鏈表功能,既節(jié)省了內(nèi)存空間,對(duì)于查找來說時(shí)間復(fù)雜度也相對(duì)小。我們用一個(gè)時(shí)序圖來重新審視下:

          三、lindex/lrange/rrange 查找操作

          讀數(shù)據(jù)是數(shù)據(jù)庫的一個(gè)另一個(gè)重要功能。一般來說,有單個(gè)查詢,批量查詢,范圍查詢之類的功能,咱們就分頭說說。

          // 1. 單個(gè)查詢 lindex key index// t_list.c, 通過下標(biāo)查找元素值void lindexCommand(client *c) {    robj *o = lookupKeyReadOrReply(c,c->argv[1],shared.nullbulk);    // 如果key本身就不存在,直接返回,空已響應(yīng)    if (o == NULL || checkType(c,o,OBJ_LIST)) return;    long index;    robj *value = NULL;    // 解析index字段,賦給 index 變量    if ((getLongFromObjectOrReply(c, c->argv[2], &index, NULL) != C_OK))        return;
          if (o->encoding == OBJ_ENCODING_QUICKLIST) { quicklistEntry entry; // 根據(jù)index查詢list數(shù)據(jù) if (quicklistIndex(o->ptr, index, &entry)) { // 使用兩個(gè)字段來保存value if (entry.value) { value = createStringObject((char*)entry.value,entry.sz); } else { value = createStringObjectFromLongLong(entry.longval); } addReplyBulk(c,value); decrRefCount(value); } else { addReply(c,shared.nullbulk); } } else { serverPanic("Unknown list encoding"); }}// quicklist.c, 根據(jù) index 查找元素/* Populate 'entry' with the element at the specified zero-based index * where 0 is the head, 1 is the element next to head * and so on. Negative integers are used in order to count * from the tail, -1 is the last element, -2 the penultimate * and so on. If the index is out of range 0 is returned. * * Returns 1 if element found * Returns 0 if element not found */int quicklistIndex(const quicklist *quicklist, const long long idx, quicklistEntry *entry) { quicklistNode *n; unsigned long long accum = 0; unsigned long long index; int forward = idx < 0 ? 0 : 1; /* < 0 -> reverse, 0+ -> forward */ // 初始化 quicklistEntry, 設(shè)置默認(rèn)值 initEntry(entry); entry->quicklist = quicklist; // index為負(fù)數(shù)時(shí),逆向搜索 if (!forward) { index = (-idx) - 1; n = quicklist->tail; } else { index = idx; n = quicklist->head; }
          if (index >= quicklist->count) return 0;
          while (likely(n)) { // n->count 代表每個(gè)list節(jié)點(diǎn)里的實(shí)際元素的個(gè)數(shù)(ziplist里可能包含n個(gè)元素) // 此處代表只會(huì)迭代到 index 所在的list節(jié)點(diǎn)就停止了 if ((accum + n->count) > index) { break; } else { D("Skipping over (%p) %u at accum %lld", (void *)n, n->count, accum); // 依次迭代 accum += n->count; n = forward ? n->next : n->prev; } } // 如果已經(jīng)迭代完成,說明未找到index元素 if (!n) return 0;
          D("Found node: %p at accum %llu, idx %llu, sub+ %llu, sub- %llu", (void *)n, accum, index, index - accum, (-index) - 1 + accum);
          entry->node = n; if (forward) { /* forward = normal head-to-tail offset. */ // index-accum 代表index節(jié)點(diǎn)在 當(dāng)前n節(jié)點(diǎn)中的偏移 entry->offset = index - accum; } else { /* reverse = need negative offset for tail-to-head, so undo * the result of the original if (index < 0) above. */ // 逆向搜索定位 如-1=1-1+0,-2=2-1+0 entry->offset = (-index) - 1 + accum; } // 解壓縮node數(shù)據(jù) quicklistDecompressNodeForUse(entry->node); // 根據(jù)offset,查找ziplist中的sds value entry->zi = ziplistIndex(entry->node->zl, entry->offset); // 從zi中獲取value,sz,longval 返回 (ziplist 協(xié)議) ziplistGet(entry->zi, &entry->value, &entry->sz, &entry->longval); /* The caller will use our result, so we don't re-compress here. * The caller can recompress or delete the node as needed. */ return 1;}// quicklist.c/* Simple way to give quicklistEntry structs default values with one call. */#define initEntry(e) \ do { \ (e)->zi = (e)->value = NULL; \ (e)->longval = -123456789; \ (e)->quicklist = NULL; \ (e)->node = NULL; \ (e)->offset = 123456789; \ (e)->sz = 0; \ } while (0)// 解壓縮node數(shù)據(jù)/* Force node to not be immediately re-compresable */#define quicklistDecompressNodeForUse(_node) \ do { \ if ((_node) && (_node)->encoding == QUICKLIST_NODE_ENCODING_LZF) { \ __quicklistDecompressNode((_node)); \ (_node)->recompress = 1; \ } \ } while (0)/* Uncompress the ziplist in 'node' and update encoding details. * Returns 1 on successful decode, 0 on failure to decode. */REDIS_STATIC int __quicklistDecompressNode(quicklistNode *node) {#ifdef REDIS_TEST node->attempted_compress = 0;#endif
          void *decompressed = zmalloc(node->sz); quicklistLZF *lzf = (quicklistLZF *)node->zl; if (lzf_decompress(lzf->compressed, lzf->sz, decompressed, node->sz) == 0) { /* Someone requested decompress, but we can't decompress. Not good. */ zfree(decompressed); return 0; } zfree(lzf); node->zl = decompressed; node->encoding = QUICKLIST_NODE_ENCODING_RAW; return 1;}// ziplist.c/* Returns an offset to use for iterating with ziplistNext. When the given * index is negative, the list is traversed back to front. When the list * doesn't contain an element at the provided index, NULL is returned. */unsigned char *ziplistIndex(unsigned char *zl, int index) { unsigned char *p; unsigned int prevlensize, prevlen = 0; if (index < 0) { index = (-index)-1; p = ZIPLIST_ENTRY_TAIL(zl); if (p[0] != ZIP_END) { ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); while (prevlen > 0 && index--) { p -= prevlen; ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); } } } else { p = ZIPLIST_ENTRY_HEAD(zl); while (p[0] != ZIP_END && index--) { p += zipRawEntryLength(p); } } return (p[0] == ZIP_END || index > 0) ? NULL : p;}

          對(duì)于范圍查找來說,按照redis之前的套路,有可能是在單個(gè)查找的上面再進(jìn)行循環(huán)查找就可以了,是否是這樣呢?我們來看看:

          // 2. lrange 范圍查詢// t_list.cvoid lrangeCommand(client *c) {    robj *o;    long start, end, llen, rangelen;    // 解析 start,end 參數(shù)    if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != C_OK) ||        (getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != C_OK)) return;
          if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptymultibulk)) == NULL || checkType(c,o,OBJ_LIST)) return; // list 長(zhǎng)度獲取, 有個(gè)計(jì)數(shù)器在 llen = listTypeLength(o);
          /* convert negative indexes */ if (start < 0) start = llen+start; if (end < 0) end = llen+end; // 將-xx的下標(biāo)轉(zhuǎn)換為正數(shù)查詢,如果負(fù)數(shù)過大,則以0計(jì)算 if (start < 0) start = 0;
          /* Invariant: start >= 0, so this test will be true when end < 0. * The range is empty when start > end or start >= length. */ if (start > end || start >= llen) { addReply(c,shared.emptymultibulk); return; } // end 過大,則限制 // end 不可能小于0,因?yàn)樯弦粋€(gè) start > end 已限制 if (end >= llen) end = llen-1; rangelen = (end-start)+1;
          /* Return the result in form of a multi-bulk reply */ addReplyMultiBulkLen(c,rangelen); if (o->encoding == OBJ_ENCODING_QUICKLIST) { // 返回列表迭代器, start-TAIL, LIST_TAIL 代表正向迭代 listTypeIterator *iter = listTypeInitIterator(o, start, LIST_TAIL); // 迭代到 rangelen=0 為止,依次向輸出緩沖輸出 while(rangelen--) { listTypeEntry entry; // 獲取下一個(gè)元素 listTypeNext(iter, &entry); quicklistEntry *qe = &entry.entry; if (qe->value) { addReplyBulkCBuffer(c,qe->value,qe->sz); } else { addReplyBulkLongLong(c,qe->longval); } } listTypeReleaseIterator(iter); } else { serverPanic("List encoding is not QUICKLIST!"); }}// t_list.c, 統(tǒng)計(jì)list長(zhǎng)度unsigned long listTypeLength(robj *subject) { if (subject->encoding == OBJ_ENCODING_QUICKLIST) { return quicklistCount(subject->ptr); } else { serverPanic("Unknown list encoding"); }}/* Return cached quicklist count */unsigned int quicklistCount(quicklist *ql) { return ql->count; }// 初始化 list 迭代器/* Initialize an iterator at the specified index. */listTypeIterator *listTypeInitIterator(robj *subject, long index, unsigned char direction) { listTypeIterator *li = zmalloc(sizeof(listTypeIterator)); li->subject = subject; li->encoding = subject->encoding; li->direction = direction; li->iter = NULL; /* LIST_HEAD means start at TAIL and move *towards* head. * LIST_TAIL means start at HEAD and move *towards tail. */ int iter_direction = direction == LIST_HEAD ? AL_START_TAIL : AL_START_HEAD; if (li->encoding == OBJ_ENCODING_QUICKLIST) { li->iter = quicklistGetIteratorAtIdx(li->subject->ptr, iter_direction, index); } else { serverPanic("Unknown list encoding"); } return li;}
          /* Initialize an iterator at a specific offset 'idx' and make the iterator * return nodes in 'direction' direction. */quicklistIter *quicklistGetIteratorAtIdx(const quicklist *quicklist, const int direction, const long long idx) { quicklistEntry entry; // 查找idx 元素先 (前面已介紹, 為 ziplist+quicklist 迭代獲得) if (quicklistIndex(quicklist, idx, &entry)) { // 獲取獲取的是整個(gè)list的迭代器, 通過current和offset進(jìn)行迭代 quicklistIter *base = quicklistGetIterator(quicklist, direction); base->zi = NULL; base->current = entry.node; base->offset = entry.offset; return base; } else { return NULL; }}// quicklist, list迭代器初始化/* Returns a quicklist iterator 'iter'. After the initialization every * call to quicklistNext() will return the next element of the quicklist. */quicklistIter *quicklistGetIterator(const quicklist *quicklist, int direction) { quicklistIter *iter; // 迭代器只包含當(dāng)前元素 iter = zmalloc(sizeof(*iter));
          if (direction == AL_START_HEAD) { iter->current = quicklist->head; iter->offset = 0; } else if (direction == AL_START_TAIL) { iter->current = quicklist->tail; iter->offset = -1; }
          iter->direction = direction; iter->quicklist = quicklist;
          iter->zi = NULL;
          return iter;}// 迭代器攜帶整個(gè)list 引用,及當(dāng)前節(jié)點(diǎn),如何進(jìn)行迭代,則是重點(diǎn)// t_list.c, 迭代list元素, 并將 當(dāng)前節(jié)點(diǎn)賦給 entry/* Stores pointer to current the entry in the provided entry structure * and advances the position of the iterator. Returns 1 when the current * entry is in fact an entry, 0 otherwise. */int listTypeNext(listTypeIterator *li, listTypeEntry *entry) { /* Protect from converting when iterating */ serverAssert(li->subject->encoding == li->encoding);
          entry->li = li; if (li->encoding == OBJ_ENCODING_QUICKLIST) { // 迭代iter(改變iter指向), 賦值給 entry->entry return quicklistNext(li->iter, &entry->entry); } else { serverPanic("Unknown list encoding"); } return 0;}// quicklist.c /* Get next element in iterator. * * Note: You must NOT insert into the list while iterating over it. * You *may* delete from the list while iterating using the * quicklistDelEntry() function. * If you insert into the quicklist while iterating, you should * re-create the iterator after your addition. * * iter = quicklistGetIterator(quicklist,<direction>); * quicklistEntry entry; * while (quicklistNext(iter, &entry)) { * if (entry.value) * [[ use entry.value with entry.sz ]] * else * [[ use entry.longval ]] * } * * Populates 'entry' with values for this iteration. * Returns 0 when iteration is complete or if iteration not possible. * If return value is 0, the contents of 'entry' are not valid. */int quicklistNext(quicklistIter *iter, quicklistEntry *entry) { initEntry(entry);
          if (!iter) { D("Returning because no iter!"); return 0; } // 保存當(dāng)前node, 及quicklist引用 entry->quicklist = iter->quicklist; entry->node = iter->current;
          if (!iter->current) { D("Returning because current node is NULL") return 0; }
          unsigned char *(*nextFn)(unsigned char *, unsigned char *) = NULL; int offset_update = 0;
          if (!iter->zi) { /* If !zi, use current index. */ // 初始化時(shí) zi 未賦值,所以直接使用當(dāng)前元素,使用offset進(jìn)行查找 quicklistDecompressNodeForUse(iter->current); iter->zi = ziplistIndex(iter->current->zl, iter->offset); } else { /* else, use existing iterator offset and get prev/next as necessary. */ if (iter->direction == AL_START_HEAD) { nextFn = ziplistNext; offset_update = 1; } else if (iter->direction == AL_START_TAIL) { nextFn = ziplistPrev; offset_update = -1; } // 向前或向后迭代元素 iter->zi = nextFn(iter->current->zl, iter->zi); iter->offset += offset_update; }
          entry->zi = iter->zi; entry->offset = iter->offset;
          if (iter->zi) { /* Populate value from existing ziplist position */ // 從 zi 中獲取值返回 (按ziplist協(xié)議) ziplistGet(entry->zi, &entry->value, &entry->sz, &entry->longval); return 1; } else { /* We ran out of ziplist entries. * Pick next node, update offset, then re-run retrieval. */ // 當(dāng)前ziplist沒有下一個(gè)元素了,遞歸查找下一個(gè)ziplist quicklistCompress(iter->quicklist, iter->current); if (iter->direction == AL_START_HEAD) { /* Forward traversal */ D("Jumping to start of next node"); iter->current = iter->current->next; iter->offset = 0; } else if (iter->direction == AL_START_TAIL) { /* Reverse traversal */ D("Jumping to end of previous node"); iter->current = iter->current->prev; iter->offset = -1; } iter->zi = NULL; return quicklistNext(iter, entry); }}// ziplist.c/* Get entry pointed to by 'p' and store in either '*sstr' or 'sval' depending * on the encoding of the entry. '*sstr' is always set to NULL to be able * to find out whether the string pointer or the integer value was set. * Return 0 if 'p' points to the end of the ziplist, 1 otherwise. */unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) { zlentry entry; if (p == NULL || p[0] == ZIP_END) return 0; if (sstr) *sstr = NULL;
          zipEntry(p, &entry); if (ZIP_IS_STR(entry.encoding)) { if (sstr) { *slen = entry.len; *sstr = p+entry.headersize; } } else { if (sval) { *sval = zipLoadInteger(p+entry.headersize,entry.encoding); } } return 1;}

          看起來并沒有利用單個(gè)查找的代碼,而是使用迭代器進(jìn)行操作。看起來不難,但是有點(diǎn)繞,我們就用一個(gè)時(shí)序圖來重新表達(dá)下:

          四、lrem 刪除操作

          增刪改查,還是要湊夠的。刪除的操作,自然是要配置數(shù)據(jù)結(jié)構(gòu)來做了,比如: 如何定位要?jiǎng)h除的元素,刪除后鏈表是否需要重排?

          // LREM key count value, 只提供了范圍刪除的方式,單個(gè)數(shù)據(jù)刪除可以通過此命令來完成// t_list.cvoid lremCommand(client *c) {    robj *subject, *obj;    obj = c->argv[3];    long toremove;    long removed = 0;
          if ((getLongFromObjectOrReply(c, c->argv[2], &toremove, NULL) != C_OK)) return;
          subject = lookupKeyWriteOrReply(c,c->argv[1],shared.czero); if (subject == NULL || checkType(c,subject,OBJ_LIST)) return; // 因是范圍型刪除,自然使用迭代刪除是最好的選擇了 listTypeIterator *li; if (toremove < 0) { toremove = -toremove; li = listTypeInitIterator(subject,-1,LIST_HEAD); } else { li = listTypeInitIterator(subject,0,LIST_TAIL); }
          listTypeEntry entry; // 迭代方式我們?cè)诓檎也僮饕言敿?xì)說明 while (listTypeNext(li,&entry)) { // 1. 比較元素是否是需要?jiǎng)h除的對(duì)象,只有完全匹配才可以刪除 if (listTypeEqual(&entry,obj)) { // 2. 實(shí)際的刪除動(dòng)作 listTypeDelete(li, &entry); server.dirty++; removed++; if (toremove && removed == toremove) break; } } listTypeReleaseIterator(li); // 如果沒有任何元素后,將key從db中刪除 if (listTypeLength(subject) == 0) { dbDelete(c->db,c->argv[1]); }
          addReplyLongLong(c,removed); if (removed) signalModifiedKey(c->db,c->argv[1]);}// 1. 是否與指定robj相等// t_list.c, listTypeEntry 是否與指定robj相等/* Compare the given object with the entry at the current position. */int listTypeEqual(listTypeEntry *entry, robj *o) { if (entry->li->encoding == OBJ_ENCODING_QUICKLIST) { serverAssertWithInfo(NULL,o,sdsEncodedObject(o)); return quicklistCompare(entry->entry.zi,o->ptr,sdslen(o->ptr)); } else { serverPanic("Unknown list encoding"); }}// t_list.cint quicklistCompare(unsigned char *p1, unsigned char *p2, int p2_len) { // 元素本身是 ziplist 類型的,所以直接交由ziplist比對(duì)即可 return ziplistCompare(p1, p2, p2_len);}// ziplist.c/* Compare entry pointer to by 'p' with 'sstr' of length 'slen'. *//* Return 1 if equal. */unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) { zlentry entry; unsigned char sencoding; long long zval, sval; if (p[0] == ZIP_END) return 0;
          zipEntry(p, &entry); if (ZIP_IS_STR(entry.encoding)) { /* Raw compare */ if (entry.len == slen) { return memcmp(p+entry.headersize,sstr,slen) == 0; } else { return 0; } } else { /* Try to compare encoded values. Don't compare encoding because * different implementations may encoded integers differently. */ if (zipTryEncoding(sstr,slen,&sval,&sencoding)) { zval = zipLoadInteger(p+entry.headersize,entry.encoding); return zval == sval; } } return 0;}
          /* Delete the element pointed to. */void listTypeDelete(listTypeIterator *iter, listTypeEntry *entry) { if (entry->li->encoding == OBJ_ENCODING_QUICKLIST) { quicklistDelEntry(iter->iter, &entry->entry); } else { serverPanic("Unknown list encoding"); }}
          // 2. 執(zhí)行刪除操作// t_list.c /* Delete the element pointed to. */void listTypeDelete(listTypeIterator *iter, listTypeEntry *entry) { if (entry->li->encoding == OBJ_ENCODING_QUICKLIST) { quicklistDelEntry(iter->iter, &entry->entry); } else { serverPanic("Unknown list encoding"); }}// quicklist.c/* Delete one element represented by 'entry' * * 'entry' stores enough metadata to delete the proper position in * the correct ziplist in the correct quicklist node. */void quicklistDelEntry(quicklistIter *iter, quicklistEntry *entry) { quicklistNode *prev = entry->node->prev; quicklistNode *next = entry->node->next; int deleted_node = quicklistDelIndex((quicklist *)entry->quicklist, entry->node, &entry->zi);
          /* after delete, the zi is now invalid for any future usage. */ iter->zi = NULL;
          /* If current node is deleted, we must update iterator node and offset. */ if (deleted_node) { // 如果node被刪除,則移動(dòng)quicklist指針 if (iter->direction == AL_START_HEAD) { iter->current = next; iter->offset = 0; } else if (iter->direction == AL_START_TAIL) { iter->current = prev; iter->offset = -1; } } /* else if (!deleted_node), no changes needed. * we already reset iter->zi above, and the existing iter->offset * doesn't move again because: * - [1, 2, 3] => delete offset 1 => [1, 3]: next element still offset 1 * - [1, 2, 3] => delete offset 0 => [2, 3]: next element still offset 0 * if we deleted the last element at offet N and now * length of this ziplist is N-1, the next call into * quicklistNext() will jump to the next node. */}// quicklist.c/* Delete one entry from list given the node for the entry and a pointer * to the entry in the node. * * Note: quicklistDelIndex() *requires* uncompressed nodes because you * already had to get *p from an uncompressed node somewhere. * * Returns 1 if the entire node was deleted, 0 if node still exists. * Also updates in/out param 'p' with the next offset in the ziplist. */REDIS_STATIC int quicklistDelIndex(quicklist *quicklist, quicklistNode *node, unsigned char **p) { int gone = 0; // 同樣,到最后一級(jí),依舊是調(diào)用ziplist的方法進(jìn)行刪除 (按照 ziplist 協(xié)議操作即可) node->zl = ziplistDelete(node->zl, p); node->count--; // 如果node中沒有元素了,就把當(dāng)前node移除,否則更新 sz 大小 if (node->count == 0) { gone = 1; __quicklistDelNode(quicklist, node); } else { quicklistNodeUpdateSz(node); } quicklist->count--; /* If we deleted the node, the original node is no longer valid */ return gone ? 1 : 0;}

          delete 操作總體來說就是一個(gè)迭代,比對(duì),刪除的操作,細(xì)節(jié)還是有點(diǎn)多的,只是都是些我們前面說過的技術(shù),也就無所謂了。

          五、lpop 彈出隊(duì)列

          這個(gè)功能大概和刪除的意思差不多,就是刪除最后一元素即可。事實(shí)上,我們也更喜歡使用redis這種功能。簡(jiǎn)單看看。

          // 用法: LPOP key// t_list.cvoid lpopCommand(client *c) {    popGenericCommand(c,LIST_HEAD);}void popGenericCommand(client *c, int where) {    robj *o = lookupKeyWriteOrReply(c,c->argv[1],shared.nullbulk);    if (o == NULL || checkType(c,o,OBJ_LIST)) return;    // 彈出元素,重點(diǎn)看一下這個(gè)方法    robj *value = listTypePop(o,where);    if (value == NULL) {        addReply(c,shared.nullbulk);    } else {        char *event = (where == LIST_HEAD) ? "lpop" : "rpop";
          addReplyBulk(c,value); decrRefCount(value); notifyKeyspaceEvent(NOTIFY_LIST,event,c->argv[1],c->db->id); if (listTypeLength(o) == 0) { notifyKeyspaceEvent(NOTIFY_GENERIC,"del", c->argv[1],c->db->id); dbDelete(c->db,c->argv[1]); } signalModifiedKey(c->db,c->argv[1]); server.dirty++; }}// t_list.crobj *listTypePop(robj *subject, int where) { long long vlong; robj *value = NULL;
          int ql_where = where == LIST_HEAD ? QUICKLIST_HEAD : QUICKLIST_TAIL; if (subject->encoding == OBJ_ENCODING_QUICKLIST) { if (quicklistPopCustom(subject->ptr, ql_where, (unsigned char **)&value, NULL, &vlong, listPopSaver)) { if (!value) value = createStringObjectFromLongLong(vlong); } } else { serverPanic("Unknown list encoding"); } return value;}// quicklist.c/* pop from quicklist and return result in 'data' ptr. Value of 'data' * is the return value of 'saver' function pointer if the data is NOT a number. * * If the quicklist element is a long long, then the return value is returned in * 'sval'. * * Return value of 0 means no elements available. * Return value of 1 means check 'data' and 'sval' for values. * If 'data' is set, use 'data' and 'sz'. Otherwise, use 'sval'. */int quicklistPopCustom(quicklist *quicklist, int where, unsigned char **data, unsigned int *sz, long long *sval, void *(*saver)(unsigned char *data, unsigned int sz)) { unsigned char *p; unsigned char *vstr; unsigned int vlen; long long vlong; int pos = (where == QUICKLIST_HEAD) ? 0 : -1;
          if (quicklist->count == 0) return 0;
          if (data) *data = NULL; if (sz) *sz = 0; if (sval) *sval = -123456789;
          quicklistNode *node; // 獲取ziplist中的,第一個(gè)元素或者最后一個(gè)節(jié)點(diǎn) if (where == QUICKLIST_HEAD && quicklist->head) { node = quicklist->head; } else if (where == QUICKLIST_TAIL && quicklist->tail) { node = quicklist->tail; } else { return 0; } // 獲取ziplist中的,第一個(gè)元素或者最后一個(gè)元素 p = ziplistIndex(node->zl, pos); if (ziplistGet(p, &vstr, &vlen, &vlong)) { if (vstr) { if (data) // 創(chuàng)建string 對(duì)象返回 *data = saver(vstr, vlen); if (sz) *sz = vlen; } else { if (data) *data = NULL; if (sval) *sval = vlong; } // 刪除獲取數(shù)據(jù)后的元素 quicklistDelIndex(quicklist, node, &p); return 1; } return 0;}

          彈出一個(gè)元素,大概分三步:

              1. 獲取頭節(jié)點(diǎn)或尾節(jié)點(diǎn);
              2. 從ziplist中獲取第一個(gè)元素或最后一個(gè)元素;
              3. 刪除頭節(jié)點(diǎn)或尾節(jié)點(diǎn);

           六、blpop 阻塞式彈出元素

          算是阻塞隊(duì)列吧。我們只想看一下,像本地語言實(shí)現(xiàn)的阻塞,我們知道用鎖+wait/notify機(jī)制。redis是如何進(jìn)行阻塞的呢?

          // 用法: BLPOP key1 [key2] timeout// t_list.c  同樣 l/r 復(fù)用代碼void blpopCommand(client *c) {    blockingPopGenericCommand(c,LIST_HEAD);}/* Blocking RPOP/LPOP */void blockingPopGenericCommand(client *c, int where) {    robj *o;    mstime_t timeout;    int j;
          if (getTimeoutFromObjectOrReply(c,c->argv[c->argc-1],&timeout,UNIT_SECONDS) != C_OK) return; // 循環(huán)查找多個(gè)key for (j = 1; j < c->argc-1; j++) { o = lookupKeyWrite(c->db,c->argv[j]); if (o != NULL) { if (o->type != OBJ_LIST) { addReply(c,shared.wrongtypeerr); return; } else { // 如果有值,則和非阻塞版本一樣了,直接響應(yīng)即可 if (listTypeLength(o) != 0) { /* Non empty list, this is like a non normal [LR]POP. */ char *event = (where == LIST_HEAD) ? "lpop" : "rpop"; robj *value = listTypePop(o,where); serverAssert(value != NULL);
          addReplyMultiBulkLen(c,2); addReplyBulk(c,c->argv[j]); addReplyBulk(c,value); decrRefCount(value); notifyKeyspaceEvent(NOTIFY_LIST,event, c->argv[j],c->db->id); if (listTypeLength(o) == 0) { dbDelete(c->db,c->argv[j]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del", c->argv[j],c->db->id); } signalModifiedKey(c->db,c->argv[j]); server.dirty++;
          /* Replicate it as an [LR]POP instead of B[LR]POP. */ rewriteClientCommandVector(c,2, (where == LIST_HEAD) ? shared.lpop : shared.rpop, c->argv[j]); // 獲取到值后直接結(jié)束流程 return; } } } }
          /* If we are inside a MULTI/EXEC and the list is empty the only thing * we can do is treating it as a timeout (even with timeout 0). */ if (c->flags & CLIENT_MULTI) { addReply(c,shared.nullmultibulk); return; }
          /* If the list is empty or the key does not exists we must block */ // 阻塞是在這里實(shí)現(xiàn)的 blockForKeys(c, c->argv + 1, c->argc - 2, timeout, NULL);}
          /* This is how the current blocking POP works, we use BLPOP as example: * - If the user calls BLPOP and the key exists and contains a non empty list * then LPOP is called instead. So BLPOP is semantically the same as LPOP * if blocking is not required. * - If instead BLPOP is called and the key does not exists or the list is * empty we need to block. In order to do so we remove the notification for * new data to read in the client socket (so that we'll not serve new * requests if the blocking request is not served). Also we put the client * in a dictionary (db->blocking_keys) mapping keys to a list of clients * blocking for this keys. * - If a PUSH operation against a key with blocked clients waiting is * performed, we mark this key as "ready", and after the current command, * MULTI/EXEC block, or script, is executed, we serve all the clients waiting * for this list, from the one that blocked first, to the last, accordingly * to the number of elements we have in the ready list. */
          /* Set a client in blocking mode for the specified key, with the specified * timeout */void blockForKeys(client *c, robj **keys, int numkeys, mstime_t timeout, robj *target) { dictEntry *de; list *l; int j;
          c->bpop.timeout = timeout; c->bpop.target = target;
          if (target != NULL) incrRefCount(target); // 阻塞入隊(duì)判定 for (j = 0; j < numkeys; j++) { /* If the key already exists in the dict ignore it. */ if (dictAdd(c->bpop.keys,keys[j],NULL) != DICT_OK) continue; incrRefCount(keys[j]);
          /* And in the other "side", to map keys -> clients */ de = dictFind(c->db->blocking_keys,keys[j]); if (de == NULL) { int retval;
          /* For every key we take a list of clients blocked for it */ l = listCreate(); // 將阻塞key放到 db 中,后臺(tái)有線程去輪詢 retval = dictAdd(c->db->blocking_keys,keys[j],l); incrRefCount(keys[j]); serverAssertWithInfo(c,keys[j],retval == DICT_OK); } else { l = dictGetVal(de); } // 將每個(gè)key 依次添加到 c->db->blocking_keys, 后續(xù)迭代將會(huì)重新檢查取出 listAddNodeTail(l,c); } // 阻塞客戶端,其實(shí)就是設(shè)置阻塞標(biāo)識(shí),然后等待key變更或超時(shí),下一次掃描時(shí)將重新檢測(cè)取出執(zhí)行 blockClient(c,BLOCKED_LIST);}// block.c 設(shè)置阻塞標(biāo)識(shí)/* Block a client for the specific operation type. Once the CLIENT_BLOCKED * flag is set client query buffer is not longer processed, but accumulated, * and will be processed when the client is unblocked. */void blockClient(client *c, int btype) { c->flags |= CLIENT_BLOCKED; c->btype = btype; server.bpop_blocked_clients++;}

          redis阻塞功能的實(shí)現(xiàn): 使用一個(gè) db->blocking_keys 的列表來保存需要阻塞的請(qǐng)求,在下一次循環(huán)時(shí),進(jìn)行掃描這些隊(duì)列的條件是否滿足,從而決定是否繼續(xù)阻塞或者取出。

          思考:從上面實(shí)現(xiàn)中,有個(gè)疑問:如何保證最多等待 timeout 時(shí)間或者最多循環(huán)多少次呢?你覺得應(yīng)該如何處理呢?

          OK, 至此,整個(gè)list數(shù)據(jù)結(jié)構(gòu)的解析算是完整了。




          往期精彩推薦



          騰訊、阿里、滴滴后臺(tái)面試題匯總總結(jié) — (含答案)

          面試:史上最全多線程面試題 !

          最新阿里內(nèi)推Java后端面試題

          JVM難學(xué)?那是因?yàn)槟銢]認(rèn)真看完這篇文章


          END


          關(guān)注作者微信公眾號(hào) —《JAVA爛豬皮》


          了解更多java后端架構(gòu)知識(shí)以及最新面試寶典


          你點(diǎn)的每個(gè)好看,我都認(rèn)真當(dāng)成了


          看完本文記得給作者點(diǎn)贊+在看哦~~~大家的支持,是作者源源不斷出文的動(dòng)力


          作者:等你歸去來

          出處:https://www.cnblogs.com/yougewe/p/12240140.html

          瀏覽 36
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  国产熟妇久久77777 | 成人毛片视频网站 | 插逼视频免费看 | 亚洲综合免费观看高清完整 | 被操视频在线观看 |