<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          這是我見過最好的NumPy圖解教程!

          共 3818字,需瀏覽 8分鐘

           ·

          2021-05-24 17:55

          NumPy是Python中用于數(shù)據(jù)分析、機(jī)器學(xué)習(xí)、科學(xué)計(jì)算的重要軟件包。它極大地簡化了向量和矩陣的操作及處理。python的不少數(shù)據(jù)處理軟件包依賴于NumPy作為其基礎(chǔ)架構(gòu)的核心部分(例如scikit-learn、SciPy、pandas和tensorflow)。除了數(shù)據(jù)切片和數(shù)據(jù)切塊的功能之外,掌握numpy也使得開發(fā)者在使用各數(shù)據(jù)處理庫調(diào)試和處理復(fù)雜用例時(shí)更具優(yōu)勢。



          在本文中,將介紹NumPy的主要用法,以及它如何呈現(xiàn)不同類型的數(shù)據(jù)(表格,圖像,文本等),這些經(jīng)Numpy處理后的數(shù)據(jù)將成為機(jī)器學(xué)習(xí)模型的輸入。





          NumPy中的數(shù)組操作




          創(chuàng)建數(shù)組


          我們可以通過將python列表傳入np.array()來創(chuàng)建一個(gè)NumPy數(shù)組(也就是強(qiáng)大的ndarray)。在下面的例子里,創(chuàng)建出的數(shù)組如右邊所示,通常情況下,我們希望NumPy為我們初始化數(shù)組的值,為此NumPy提供了諸如ones(),zeros()和random.random()之類的方法。我們只需傳入元素個(gè)數(shù)即可:

           

          一旦我們創(chuàng)建了數(shù)組,我們就可以用其做點(diǎn)有趣的應(yīng)用了,文摘菌將在下文展開說明。


          數(shù)組的算術(shù)運(yùn)算


          讓我們創(chuàng)建兩個(gè)NumPy數(shù)組,分別稱作data和ones:



          若要計(jì)算兩個(gè)數(shù)組的加法,只需簡單地敲入data + ones,就可以實(shí)現(xiàn)對應(yīng)位置上的數(shù)據(jù)相加的操作(即每行數(shù)據(jù)進(jìn)行相加),這種操作比循環(huán)讀取數(shù)組的方法代碼實(shí)現(xiàn)更加簡潔。



          當(dāng)然,在此基礎(chǔ)上舉一反三,也可以實(shí)現(xiàn)減法、乘法和除法等操作:



          許多情況下,我們希望進(jìn)行數(shù)組和單個(gè)數(shù)值的操作(也稱作向量和標(biāo)量之間的操作)。比如:如果數(shù)組表示的是以英里為單位的距離,我們的目標(biāo)是將其轉(zhuǎn)換為公里數(shù)。可以簡單的寫作data * 1.6:



          NumPy通過數(shù)組廣播(broadcasting)知道這種操作需要和數(shù)組的每個(gè)元素相乘。


          數(shù)組的切片操作


          我們可以像python列表操作那樣對NumPy數(shù)組進(jìn)行索引和切片,如下圖所示:



          聚合函數(shù)


          NumPy為我們帶來的便利還有聚合函數(shù),聚合函數(shù)可以將數(shù)據(jù)進(jìn)行壓縮,統(tǒng)計(jì)數(shù)組中的一些特征值:



          除了min,max和sum等函數(shù),還有mean(均值),prod(數(shù)據(jù)乘法)計(jì)算所有元素的乘積,std(標(biāo)準(zhǔn)差),等等。上面的所有例子都在一個(gè)維度上處理向量。除此之外,NumPy之美的一個(gè)關(guān)鍵之處是它能夠?qū)⒅八吹降乃泻瘮?shù)應(yīng)用到任意維度上。





          NumPy中的矩陣操作




          創(chuàng)建矩陣


          我們可以通過將二維列表傳給Numpy來創(chuàng)建矩陣。

          np.array([[1,2],[3,4]])



          除此外,也可以使用上文提到的ones()、zeros()和random.random()來創(chuàng)建矩陣,只需傳入一個(gè)元組來描述矩陣的維度:



          矩陣的算術(shù)運(yùn)算


          對于大小相同的兩個(gè)矩陣,我們可以使用算術(shù)運(yùn)算符(+-*/)將其相加或者相乘。NumPy對這類運(yùn)算采用對應(yīng)位置(position-wise)操作處理:



          對于不同大小的矩陣,只有兩個(gè)矩陣的維度同為1時(shí)(例如矩陣只有一列或一行),我們才能進(jìn)行這些算術(shù)運(yùn)算,在這種情況下,NumPy使用廣播規(guī)則(broadcast)進(jìn)行操作處理:



          與算術(shù)運(yùn)算有很大區(qū)別是使用點(diǎn)積的矩陣乘法。NumPy提供了dot()方法,可用于矩陣之間進(jìn)行點(diǎn)積運(yùn)算:



          上圖的底部添加了矩陣尺寸,以強(qiáng)調(diào)運(yùn)算的兩個(gè)矩陣在列和行必須相等。可以將此操作圖解為如下所示:



          矩陣的切片和聚合


          索引和切片功能在操作矩陣時(shí)變得更加有用。可以在不同維度上使用索引操作來對數(shù)據(jù)進(jìn)行切片。



          我們可以像聚合向量一樣聚合矩陣:



          不僅可以聚合矩陣中的所有值,還可以使用axis參數(shù)指定行和列的聚合:



          矩陣的轉(zhuǎn)置和重構(gòu)


          處理矩陣時(shí)經(jīng)常需要對矩陣進(jìn)行轉(zhuǎn)置操作,常見的情況如計(jì)算兩個(gè)矩陣的點(diǎn)積。NumPy數(shù)組的屬性T可用于獲取矩陣的轉(zhuǎn)置。



          在較為復(fù)雜的用例中,你可能會(huì)發(fā)現(xiàn)自己需要改變某個(gè)矩陣的維度。這在機(jī)器學(xué)習(xí)應(yīng)用中很常見,例如模型的輸入矩陣形狀與數(shù)據(jù)集不同,可以使用NumPy的reshape()方法。只需將矩陣所需的新維度傳入即可。也可以傳入-1,NumPy可以根據(jù)你的矩陣推斷出正確的維度:



          上文中的所有功能都適用于多維數(shù)據(jù),其中心數(shù)據(jù)結(jié)構(gòu)稱為ndarray(N維數(shù)組)。



          很多時(shí)候,改變維度只需在NumPy函數(shù)的參數(shù)中添加一個(gè)逗號(hào),如下圖所示:






          NumPy中的公式應(yīng)用示例




          NumPy的關(guān)鍵用例是實(shí)現(xiàn)適用于矩陣和向量的數(shù)學(xué)公式。這也Python中常用NumPy的原因。例如,均方誤差是監(jiān)督機(jī)器學(xué)習(xí)模型處理回歸問題的核心:



          在NumPy中可以很容易地實(shí)現(xiàn)均方誤差:



          這樣做的好處是,numpy無需考慮predictions與labels具體包含的值。文摘菌將通過一個(gè)示例來逐步執(zhí)行上面代碼行中的四個(gè)操作:



          預(yù)測(predictions)和標(biāo)簽(labels)向量都包含三個(gè)值。這意味著n的值為3。在我們執(zhí)行減法后,我們最終得到如下值:



          然后我們可以計(jì)算向量中各值的平方:



          現(xiàn)在我們對這些值求和:



          最終得到該預(yù)測的誤差值和模型質(zhì)量分?jǐn)?shù)。





          用NumPy表示日常數(shù)據(jù)




          日常接觸到的數(shù)據(jù)類型,如電子表格,圖像,音頻......等,如何表示呢?Numpy可以解決這個(gè)問題。


          表和電子表格


          電子表格或數(shù)據(jù)表都是二維矩陣。電子表格中的每個(gè)工作表都可以是自己的變量。python中類似的結(jié)構(gòu)是pandas數(shù)據(jù)幀(dataframe),它實(shí)際上使用NumPy來構(gòu)建的。



          音頻和時(shí)間序列


          音頻文件是一維樣本數(shù)組。每個(gè)樣本都是代表一小段音頻信號(hào)的數(shù)字。CD質(zhì)量的音頻每秒可能有44,100個(gè)采樣樣本,每個(gè)樣本是一個(gè)-65535到65536之間的整數(shù)。這意味著如果你有一個(gè)10秒的CD質(zhì)量的WAVE文件,你可以將它加載到長度為10 * 44,100 = 441,000個(gè)樣本的NumPy數(shù)組中。想要提取音頻的第一秒?只需將文件加載到我們稱之為audio的NumPy數(shù)組中,然后截取audio[:44100]。


          以下是一段音頻文件:



          時(shí)間序列數(shù)據(jù)也是如此(例如,股票價(jià)格隨時(shí)間變化的序列)。


          圖像


          圖像是大小為(高度×寬度)的像素矩陣。如果圖像是黑白圖像(也稱為灰度圖像),則每個(gè)像素可以由單個(gè)數(shù)字表示(通常在0(黑色)和255(白色)之間)。如果對圖像做處理,裁剪圖像的左上角10 x 10大小的一塊像素區(qū)域,用NumPy中的image[:10,:10]就可以實(shí)現(xiàn)。


          這是一個(gè)圖像文件的片段:



          如果圖像是彩色的,則每個(gè)像素由三個(gè)數(shù)字表示 :紅色,綠色和藍(lán)色。在這種情況下,我們需要第三維(因?yàn)槊總€(gè)單元格只能包含一個(gè)數(shù)字)。因此彩色圖像由尺寸為(高x寬x 3)的ndarray表示。



          語言


          如果我們處理文本,情況就會(huì)有所不同。用數(shù)字表示文本需要兩個(gè)步驟,構(gòu)建詞匯表(模型知道的所有唯一單詞的清單)和嵌入(embedding)。讓我們看看用數(shù)字表示這個(gè)(翻譯的)古語引用的步驟:“Have the bards who preceded me left any theme unsung?”


          模型需要先訓(xùn)練大量文本才能用數(shù)字表示這位戰(zhàn)場詩人的詩句。我們可以讓模型處理一個(gè)小數(shù)據(jù)集,并使用這個(gè)數(shù)據(jù)集來構(gòu)建一個(gè)詞匯表(71,290個(gè)單詞):


           


          然后可以將句子劃分成一系列“詞”token(基于通用規(guī)則的單詞或單詞部分):



          然后我們用詞匯表中的id替換每個(gè)單詞:



          這些ID仍然不能為模型提供有價(jià)值的信息。因此,在將一系列單詞送入模型之前,需要使用嵌入(embedding)來替換token/單詞(在本例子中使用50維度的word2vec嵌入):



          你可以看到此NumPy數(shù)組的維度為[embedding_dimension x sequence_length]。


          在實(shí)踐中,這些數(shù)值不一定是這樣的,但我以這種方式呈現(xiàn)它是為了視覺上的一致。出于性能原因,深度學(xué)習(xí)模型傾向于保留批數(shù)據(jù)大小的第一維(因?yàn)槿绻⑿杏?xùn)練多個(gè)示例,則可以更快地訓(xùn)練模型)。很明顯,這里非常適合使用reshape()。例如,像BERT這樣的模型會(huì)期望其輸入矩陣的形狀為:[batch_size,sequence_length,embedding_size]。


          這是一個(gè)數(shù)字合集,模型可以處理并執(zhí)行各種有用的操作。我留空了許多行,可以用其他示例填充以供模型訓(xùn)練(或預(yù)測)。


          事實(shí)證明,在我們的例子中,那位詩人的話語比其他詩人的詩句更加名垂千古。盡管生而為奴,詩人安塔拉(Antarah)的英勇和語言能力使他獲得了自由和神話般的地位,他的詩是伊斯蘭教以前的阿拉伯半島《懸詩》的七首詩之一。


          來源丨大數(shù)據(jù)文摘
          原文鏈接丨h(huán)ttps://jalammar.github.io/visual-numpy/

          - EOF -

          回復(fù)關(guān)鍵字“簡明python ”,立即獲取入門必備書籍簡明python教程》電子版

          回復(fù)關(guān)鍵字爬蟲”,立即獲取爬蟲學(xué)習(xí)資料

          版權(quán)申明:內(nèi)容來源網(wǎng)絡(luò),版權(quán)歸原創(chuàng)者所有。除非無法確認(rèn),都會(huì)標(biāo)明作者及出處,如有侵權(quán),煩請告知,我們會(huì)立即刪除并致歉。我們對文中觀點(diǎn)保持中立,僅供參考、交流之目的。


          點(diǎn)擊關(guān)注【python入門與進(jìn)階】,閱讀更多精彩內(nèi)容
          ??????
          瀏覽 72
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  欧美成人高清无码 | 日韩性爱网 | 亚洲无码短视频 | 亚洲无码AV在线亚洲有码AV在线精品 | www.大鸡巴 |