<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          用 Python 爬取了《掃黑風(fēng)暴》數(shù)據(jù),并將其可視化分析后,終于知道它為什么這么火了~

          共 18431字,需瀏覽 37分鐘

           ·

          2021-09-03 17:55


          大家好,我是安果~

          今天來跟大家分享一下從數(shù)據(jù)可視化角度看掃黑風(fēng)暴~

          • 緒論
          • 如何查找視頻id
          • 項(xiàng)目結(jié)構(gòu)
            • 制作詞云圖
            • 制作最近評(píng)論數(shù)條形圖與折線圖
            • 制作每小時(shí)評(píng)論條形圖與折線圖
            • 制作最近評(píng)論數(shù)餅圖
            • 制作每小時(shí)評(píng)論餅圖
            • 制作觀看時(shí)間區(qū)間評(píng)論統(tǒng)計(jì)餅圖
            • 制作掃黑風(fēng)暴主演提及占比餅圖
            • 制作評(píng)論內(nèi)容情感分析圖
            • 評(píng)論的時(shí)間戳轉(zhuǎn)換為正常時(shí)間
            • 評(píng)論內(nèi)容讀入CSV
            • 統(tǒng)計(jì)一天各個(gè)時(shí)間段內(nèi)的評(píng)論數(shù)
            • 統(tǒng)計(jì)最近評(píng)論數(shù)
            • 爬取評(píng)論內(nèi)容
            • 爬取評(píng)論時(shí)間
            • 一.爬蟲部分
            • 二.數(shù)據(jù)處理部分
            • 三. 數(shù)據(jù)分析

          緒論

          本期是對(duì)騰訊熱播劇——掃黑風(fēng)暴的一次爬蟲與數(shù)據(jù)分析,耗時(shí)兩個(gè)小時(shí),總爬取條數(shù)3W條評(píng)論,總體來說比較普通,值得注意的一點(diǎn)是評(píng)論的情緒文本分析處理,這是第一次接觸的知識(shí)。

          爬蟲方面:由于騰訊的評(píng)論數(shù)據(jù)是封裝在json里面,所以只需要找到j(luò)son文件,對(duì)需要的數(shù)據(jù)進(jìn)行提取保存即可。

          • 視頻網(wǎng)址:https://v.qq.com/x/cover/mzc00200lxzhhqz.html
          • 評(píng)論json數(shù)據(jù)網(wǎng)址:https://video.coral.qq.com/varticle/7225749902/comment/v2
          • 注:只要替換視頻數(shù)字id的值,即可爬取其他視頻的評(píng)論

          如何查找視頻id?

          項(xiàng)目結(jié)構(gòu):

          一. 爬蟲部分:

          1.爬取評(píng)論內(nèi)容代碼:spiders.py

          import requests
          import re
          import random


          def get_html(url, params):
          uapools = [
          'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36',
          'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0',
          'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14'
          ]

          thisua = random.choice(uapools)
          headers = {"User-Agent": thisua}
          r = requests.get(url, headers=headers, params=params)
          r.raise_for_status()
          r.encoding = r.apparent_encoding
          r.encoding = 'utf-8' # 不加此句出現(xiàn)亂碼
          return r.text


          def parse_page(infolist, data):
          commentpat = '"content":"(.*?)"'
          lastpat = '"last":"(.*?)"'

          commentall = re.compile(commentpat, re.S).findall(data)
          next_cid = re.compile(lastpat).findall(data)[0]

          infolist.append(commentall)

          return next_cid



          def print_comment_list(infolist):
          j = 0
          for page in infolist:
          print('第' + str(j + 1) + '頁(yè)\n')
          commentall = page
          for i in range(0, len(commentall)):
          print(commentall[i] + '\n')
          j += 1


          def save_to_txt(infolist, path):
          fw = open(path, 'w+', encoding='utf-8')
          j = 0
          for page in infolist:
          #fw.write('第' + str(j + 1) + '頁(yè)\n')
          commentall = page
          for i in range(0, len(commentall)):
          fw.write(commentall[i] + '\n')
          j += 1
          fw.close()


          def main():
          infolist = []
          vid = '7225749902';
          cid = "0";
          page_num = 3000
          url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2'
          #print(url)

          for i in range(page_num):
          params = {'orinum': '10', 'cursor': cid}
          html = get_html(url, params)
          cid = parse_page(infolist, html)


          print_comment_list(infolist)
          save_to_txt(infolist, 'content.txt')


          main()

          2.爬取評(píng)論時(shí)間代碼:sp.py

          import requests
          import re
          import random


          def get_html(url, params):
          uapools = [
          'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36',
          'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0',
          'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14'
          ]

          thisua = random.choice(uapools)
          headers = {"User-Agent": thisua}
          r = requests.get(url, headers=headers, params=params)
          r.raise_for_status()
          r.encoding = r.apparent_encoding
          r.encoding = 'utf-8' # 不加此句出現(xiàn)亂碼
          return r.text


          def parse_page(infolist, data):
          commentpat = '"time":"(.*?)"'
          lastpat = '"last":"(.*?)"'

          commentall = re.compile(commentpat, re.S).findall(data)
          next_cid = re.compile(lastpat).findall(data)[0]

          infolist.append(commentall)

          return next_cid



          def print_comment_list(infolist):
          j = 0
          for page in infolist:
          print('第' + str(j + 1) + '頁(yè)\n')
          commentall = page
          for i in range(0, len(commentall)):
          print(commentall[i] + '\n')
          j += 1


          def save_to_txt(infolist, path):
          fw = open(path, 'w+', encoding='utf-8')
          j = 0
          for page in infolist:
          #fw.write('第' + str(j + 1) + '頁(yè)\n')
          commentall = page
          for i in range(0, len(commentall)):
          fw.write(commentall[i] + '\n')
          j += 1
          fw.close()


          def main():
          infolist = []
          vid = '7225749902';
          cid = "0";
          page_num =3000
          url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2'
          #print(url)

          for i in range(page_num):
          params = {'orinum': '10', 'cursor': cid}
          html = get_html(url, params)
          cid = parse_page(infolist, html)


          print_comment_list(infolist)
          save_to_txt(infolist, 'time.txt')


          main()

          二.數(shù)據(jù)處理部分

          1.評(píng)論的時(shí)間戳轉(zhuǎn)換為正常時(shí)間 time.py

          # coding=gbk
          import csv
          import time

          csvFile = open("data.csv",'w',newline='',encoding='utf-8')
          writer = csv.writer(csvFile)
          csvRow = []
          #print(csvRow)
          f = open("time.txt",'r',encoding='utf-8')
          for line in f:
          csvRow = int(line)
          #print(csvRow)

          timeArray = time.localtime(csvRow)
          csvRow = time.strftime("%Y-%m-%d %H:%M:%S", timeArray)
          print(csvRow)
          csvRow = csvRow.split()
          writer.writerow(csvRow)

          f.close()
          csvFile.close()

          2.評(píng)論內(nèi)容讀入csv  CD.py

          # coding=gbk
          import csv
          csvFile = open("content.csv",'w',newline='',encoding='utf-8')
          writer = csv.writer(csvFile)
          csvRow = []

          f = open("content.txt",'r',encoding='utf-8')
          for line in f:
          csvRow = line.split()
          writer.writerow(csvRow)

          f.close()
          csvFile.close()

          3.統(tǒng)計(jì)一天各個(gè)時(shí)間段內(nèi)的評(píng)論數(shù) py.py

          # coding=gbk
          import csv

          from pyecharts import options as opts
          from sympy.combinatorics import Subset
          from wordcloud import WordCloud

          with open('../Spiders/data.csv') as csvfile:
          reader = csv.reader(csvfile)

          data1 = [str(row[1])[0:2] for row in reader]

          print(data1)
          print(type(data1))


          #先變成集合得到seq中的所有元素,避免重復(fù)遍歷
          set_seq = set(data1)
          rst = []
          for item in set_seq:
          rst.append((item,data1.count(item))) #添加元素及出現(xiàn)個(gè)數(shù)
          rst.sort()
          print(type(rst))
          print(rst)

          with open("time2.csv", "w+", newline='', encoding='utf-8') as f:
          writer = csv.writer(f, delimiter=',')
          for i in rst: # 對(duì)于每一行的,將這一行的每個(gè)元素分別寫在對(duì)應(yīng)的列中
          writer.writerow(i)

          with open('time2.csv') as csvfile:
          reader = csv.reader(csvfile)
          x = [str(row[0]) for row in reader]
          print(x)
          with open('time2.csv') as csvfile:
          reader = csv.reader(csvfile)
          y1 = [float(row[1]) for row in reader]
          print(y1)

          處理結(jié)果(評(píng)論時(shí)間,評(píng)論數(shù))

          4.統(tǒng)計(jì)最近評(píng)論數(shù) py1.py

          # coding=gbk
          import csv

          from pyecharts import options as opts
          from sympy.combinatorics import Subset
          from wordcloud import WordCloud

          with open('../Spiders/data.csv') as csvfile:
          reader = csv.reader(csvfile)

          data1 = [str(row[0]) for row in reader]
          #print(data1)
          print(type(data1))


          #先變成集合得到seq中的所有元素,避免重復(fù)遍歷
          set_seq = set(data1)
          rst = []
          for item in set_seq:
          rst.append((item,data1.count(item))) #添加元素及出現(xiàn)個(gè)數(shù)
          rst.sort()
          print(type(rst))
          print(rst)



          with open("time1.csv", "w+", newline='', encoding='utf-8') as f:
          writer = csv.writer(f, delimiter=',')
          for i in rst: # 對(duì)于每一行的,將這一行的每個(gè)元素分別寫在對(duì)應(yīng)的列中
          writer.writerow(i)

          with open('time1.csv') as csvfile:
          reader = csv.reader(csvfile)
          x = [str(row[0]) for row in reader]
          print(x)
          with open('time1.csv') as csvfile:
          reader = csv.reader(csvfile)
          y1 = [float(row[1]) for row in reader]

          print(y1)



          處理結(jié)果(評(píng)論時(shí)間,評(píng)論數(shù))

          三. 數(shù)據(jù)分析

          數(shù)據(jù)分析方面:涉及到了詞云圖,條形,折線,餅圖,后三者是對(duì)評(píng)論時(shí)間與主演占比的分析,然而騰訊的評(píng)論時(shí)間是以時(shí)間戳的形式顯示,所以要進(jìn)行轉(zhuǎn)換,再去統(tǒng)計(jì)出現(xiàn)次數(shù),最后,新加了對(duì)評(píng)論內(nèi)容的情感分析。

          1.制作詞云圖

          wc.py

          import numpy as np
          import re
          import jieba
          from wordcloud import WordCloud
          from matplotlib import pyplot as plt
          from PIL import Image

          # 上面的包自己安裝,不會(huì)的就百度

          f = open('../Spiders/content.txt', 'r', encoding='utf-8') # 這是數(shù)據(jù)源,也就是想生成詞云的數(shù)據(jù)
          txt = f.read() # 讀取文件
          f.close() # 關(guān)閉文件,其實(shí)用with就好,但是懶得改了
          # 如果是文章的話,需要用到j(luò)ieba分詞,分完之后也可以自己處理下再生成詞云
          newtxt = re.sub("[A-Za-z0-9\!\%\[\]\,\。]", "", txt)
          print(newtxt)
          words = jieba.lcut(newtxt)

          img = Image.open(r'wc.jpg') # 想要搞得形狀
          img_array = np.array(img)

          # 相關(guān)配置,里面這個(gè)collocations配置可以避免重復(fù)
          wordcloud = WordCloud(
          background_color="white",
          width=1080,
          height=960,
          font_path="../文悅新青年.otf",
          max_words=150,
          scale=10,#清晰度
          max_font_size=100,
          mask=img_array,
          collocations=False).generate(newtxt)

          plt.imshow(wordcloud)
          plt.axis('off')
          plt.show()
          wordcloud.to_file('wc.png')

          輪廓圖:wc.jpg

          詞云圖:result.png (注:這里要把英文字母過濾掉)

          2.制作最近評(píng)論數(shù)條形圖與折線圖  DrawBar.py

          # encoding: utf-8
          import csv
          import pyecharts.options as opts
          from pyecharts.charts import Bar
          from pyecharts.globals import ThemeType


          class DrawBar(object):

          """繪制柱形圖類"""
          def __init__(self):
          """創(chuàng)建柱狀圖實(shí)例,并設(shè)置寬高和風(fēng)格"""
          self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.LIGHT))

          def add_x(self):
          """為圖形添加X軸數(shù)據(jù)"""
          with open('time1.csv') as csvfile:
          reader = csv.reader(csvfile)
          x = [str(row[0]) for row in reader]
          print(x)


          self.bar.add_xaxis(
          xaxis_data=x,

          )

          def add_y(self):
          with open('time1.csv') as csvfile:
          reader = csv.reader(csvfile)
          y1 = [float(row[1]) for row in reader]

          print(y1)



          """為圖形添加Y軸數(shù)據(jù),可添加多條"""
          self.bar.add_yaxis( # 第一個(gè)Y軸數(shù)據(jù)
          series_name="評(píng)論數(shù)", # Y軸數(shù)據(jù)名稱
          y_axis=y1, # Y軸數(shù)據(jù)
          label_opts=opts.LabelOpts(is_show=True,color="black"), # 設(shè)置標(biāo)簽
          bar_max_width='100px', # 設(shè)置柱子最大寬度
          )


          def set_global(self):
          """設(shè)置圖形的全局屬性"""
          #self.bar(width=2000,height=1000)
          self.bar.set_global_opts(
          title_opts=opts.TitleOpts( # 設(shè)置標(biāo)題
          title='掃黑風(fēng)暴近日評(píng)論統(tǒng)計(jì)',title_textstyle_opts=opts.TextStyleOpts(font_size=35)

          ),
          tooltip_opts=opts.TooltipOpts( # 提示框配置項(xiàng)(鼠標(biāo)移到圖形上時(shí)顯示的東西)
          is_show=True, # 是否顯示提示框
          trigger="axis", # 觸發(fā)類型(axis坐標(biāo)軸觸發(fā),鼠標(biāo)移到時(shí)會(huì)有一條垂直于X軸的實(shí)線跟隨鼠標(biāo)移動(dòng),并顯示提示信息)
          axis_pointer_type="cross" # 指示器類型(cross將會(huì)生成兩條分別垂直于X軸和Y軸的虛線,不啟用trigger才會(huì)顯示完全)
          ),
          toolbox_opts=opts.ToolboxOpts(), # 工具箱配置項(xiàng)(什么都不填默認(rèn)開啟所有工具)

          )

          def draw(self):
          """繪制圖形"""

          self.add_x()
          self.add_y()
          self.set_global()
          self.bar.render('../Html/DrawBar.html') # 將圖繪制到 test.html 文件內(nèi),可在瀏覽器打開
          def run(self):
          """執(zhí)行函數(shù)"""
          self.draw()



          if __name__ == '__main__':
          app = DrawBar()

          app.run()

          效果圖:DrawBar.html

          3.制作每小時(shí)評(píng)論條形圖與折線圖  DrawBar2.py

          # encoding: utf-8
          # encoding: utf-8
          import csv
          import pyecharts.options as opts
          from pyecharts.charts import Bar
          from pyecharts.globals import ThemeType


          class DrawBar(object):

          """繪制柱形圖類"""
          def __init__(self):
          """創(chuàng)建柱狀圖實(shí)例,并設(shè)置寬高和風(fēng)格"""
          self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.MACARONS))

          def add_x(self):
          """為圖形添加X軸數(shù)據(jù)"""
          str_name1 = '點(diǎn)'

          with open('time2.csv') as csvfile:
          reader = csv.reader(csvfile)
          x = [str(row[0] + str_name1) for row in reader]
          print(x)


          self.bar.add_xaxis(
          xaxis_data=x
          )

          def add_y(self):
          with open('time2.csv') as csvfile:
          reader = csv.reader(csvfile)
          y1 = [int(row[1]) for row in reader]

          print(y1)



          """為圖形添加Y軸數(shù)據(jù),可添加多條"""
          self.bar.add_yaxis( # 第一個(gè)Y軸數(shù)據(jù)
          series_name="評(píng)論數(shù)", # Y軸數(shù)據(jù)名稱
          y_axis=y1, # Y軸數(shù)據(jù)
          label_opts=opts.LabelOpts(is_show=False), # 設(shè)置標(biāo)簽
          bar_max_width='50px', # 設(shè)置柱子最大寬度

          )


          def set_global(self):
          """設(shè)置圖形的全局屬性"""
          #self.bar(width=2000,height=1000)
          self.bar.set_global_opts(
          title_opts=opts.TitleOpts( # 設(shè)置標(biāo)題
          title='掃黑風(fēng)暴各時(shí)間段評(píng)論統(tǒng)計(jì)',title_textstyle_opts=opts.TextStyleOpts(font_size=35)

          ),
          tooltip_opts=opts.TooltipOpts( # 提示框配置項(xiàng)(鼠標(biāo)移到圖形上時(shí)顯示的東西)
          is_show=True, # 是否顯示提示框
          trigger="axis", # 觸發(fā)類型(axis坐標(biāo)軸觸發(fā),鼠標(biāo)移到時(shí)會(huì)有一條垂直于X軸的實(shí)線跟隨鼠標(biāo)移動(dòng),并顯示提示信息)
          axis_pointer_type="cross" # 指示器類型(cross將會(huì)生成兩條分別垂直于X軸和Y軸的虛線,不啟用trigger才會(huì)顯示完全)
          ),
          toolbox_opts=opts.ToolboxOpts(), # 工具箱配置項(xiàng)(什么都不填默認(rèn)開啟所有工具)

          )

          def draw(self):
          """繪制圖形"""

          self.add_x()
          self.add_y()
          self.set_global()
          self.bar.render('../Html/DrawBar2.html') # 將圖繪制到 test.html 文件內(nèi),可在瀏覽器打開
          def run(self):
          """執(zhí)行函數(shù)"""
          self.draw()



          if __name__ == '__main__':
          app = DrawBar()

          app.run()

          效果圖:DrawBar2.html

          4.制作最近評(píng)論數(shù)餅圖   pie_pyecharts.py

          import csv

          from pyecharts import options as opts
          from pyecharts.charts import Pie
          from random import randint

          from pyecharts.globals import ThemeType

          with open('time1.csv') as csvfile:
          reader = csv.reader(csvfile)
          x = [str(row[0]) for row in reader]
          print(x)
          with open('time1.csv') as csvfile:
          reader = csv.reader(csvfile)
          y1 = [float(row[1]) for row in reader]

          print(y1)



          num = y1
          lab = x
          (
          Pie(init_opts=opts.InitOpts(width='1700px',height='450px',theme=ThemeType.LIGHT))#默認(rèn)900,600
          .set_global_opts(
          title_opts=opts.TitleOpts(title="掃黑風(fēng)暴近日評(píng)論統(tǒng)計(jì)",
          title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(

          pos_top="10%", pos_left="1%",# 圖例位置調(diào)整
          ),)
          .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#餅圖
          .add(series_name='',center=[845, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#環(huán)圖
          .add(series_name='', center=[1380, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格爾圖
          ).render('../Html/pie_pyecharts.html')

          效果圖

          在這里插入圖片描述

          5.制作每小時(shí)評(píng)論餅圖  pie_pyecharts2.py

          import csv

          from pyecharts import options as opts
          from pyecharts.charts import Pie
          from random import randint

          from pyecharts.globals import ThemeType

          str_name1 = '點(diǎn)'

          with open('time2.csv') as csvfile:
          reader = csv.reader(csvfile)
          x = [str(row[0]+str_name1) for row in reader]
          print(x)
          with open('time2.csv') as csvfile:
          reader = csv.reader(csvfile)
          y1 = [int(row[1]) for row in reader]

          print(y1)



          num = y1
          lab = x
          (
          Pie(init_opts=opts.InitOpts(width='1650px',height='500px',theme=ThemeType.LIGHT,))#默認(rèn)900,600
          .set_global_opts(
          title_opts=opts.TitleOpts(title="掃黑風(fēng)暴每小時(shí)評(píng)論統(tǒng)計(jì)"
          ,title_textstyle_opts=opts.TextStyleOpts(font_size=27)),
          legend_opts=opts.LegendOpts(

          pos_top="8%", pos_left="4%",# 圖例位置調(diào)整
          ),
          )
          .add(series_name='',center=[250, 300], data_pair=[(j, i) for i, j in zip(num, lab)])#餅圖
          .add(series_name='',center=[810, 300],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#環(huán)圖
          .add(series_name='', center=[1350, 300],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格爾圖
          ).render('../Html/pie_pyecharts2.html')

          效果圖

          6.制作觀看時(shí)間區(qū)間評(píng)論統(tǒng)計(jì)餅圖  pie_pyecharts3.py

          # coding=gbk
          import csv

          from pyecharts import options as opts
          from pyecharts.globals import ThemeType
          from sympy.combinatorics import Subset
          from wordcloud import WordCloud

          with open('../Spiders/data.csv') as csvfile:
          reader = csv.reader(csvfile)

          data2 = [int(row[1].strip('')[0:2]) for row in reader]


          #print(data2)
          print(type(data2))

          #先變成集合得到seq中的所有元素,避免重復(fù)遍歷
          set_seq = set(data2)
          list = []
          for item in set_seq:
          list.append((item,data2.count(item))) #添加元素及出現(xiàn)個(gè)數(shù)
          list.sort()
          print(type(list))
          #print(list)


          with open("time2.csv", "w+", newline='', encoding='utf-8') as f:
          writer = csv.writer(f, delimiter=',')
          for i in list: # 對(duì)于每一行的,將這一行的每個(gè)元素分別寫在對(duì)應(yīng)的列中
          writer.writerow(i)


          n = 4 #分成n組
          m = int(len(list)/n)
          list2 = []
          for i in range(0, len(list), m):
          list2.append(list[i:i+m])

          print("凌晨 : ",list2[0])
          print("上午 : ",list2[1])
          print("下午 : ",list2[2])
          print("晚上 : ",list2[3])

          with open('time2.csv') as csvfile:
          reader = csv.reader(csvfile)
          y1 = [int(row[1]) for row in reader]

          print(y1)

          n =6
          groups = [y1[i:i + n] for i in range(0, len(y1), n)]

          print(groups)

          x=['凌晨','上午','下午','晚上']
          y1=[]
          for y1 in groups:
          num_sum = 0
          for groups in y1:
          num_sum += groups

          print(x)
          print(y1)


          import csv

          from pyecharts import options as opts
          from pyecharts.charts import Pie
          from random import randint

          str_name1 = '點(diǎn)'

          num = y1
          lab = x
          (
          Pie(init_opts=opts.InitOpts(width='1500px',height='450px',theme=ThemeType.LIGHT))#默認(rèn)900,600
          .set_global_opts(
          title_opts=opts.TitleOpts(title="掃黑風(fēng)暴觀看時(shí)間區(qū)間評(píng)論統(tǒng)計(jì)"
          , title_textstyle_opts=opts.TextStyleOpts(font_size=30)),
          legend_opts=opts.LegendOpts(

          pos_top="8%", # 圖例位置調(diào)整
          ),
          )
          .add(series_name='',center=[260, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#餅圖
          .add(series_name='',center=[1230, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#環(huán)圖
          .add(series_name='', center=[750, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格爾圖
          ).render('../Html/pie_pyecharts3.html')


          效果圖

          7.制作掃黑風(fēng)暴主演提及占比餅圖  pie_pyecharts4.py

          import csv

          import numpy as np
          import re
          import jieba
          from matplotlib.pyplot import scatter
          from wordcloud import WordCloud
          from matplotlib import pyplot as plt
          from PIL import Image

          # 上面的包自己安裝,不會(huì)的就百度

          f = open('../Spiders/content.txt', 'r', encoding='utf-8') # 這是數(shù)據(jù)源,也就是想生成詞云的數(shù)據(jù)
          words = f.read() # 讀取文件
          f.close() # 關(guān)閉文件,其實(shí)用with就好,但是懶得改了

          name=["孫紅雷","張藝興","劉奕君","吳越","王志飛","劉之冰","江疏影"]

          print(name)
          count=[float(words.count("孫紅雷")),
          float(words.count("藝興")),
          float(words.count("劉奕君")),
          float(words.count("吳越")),
          float(words.count("王志飛")),
          float(words.count("劉之冰")),
          float(words.count("江疏影"))]
          print(count)

          import csv

          from pyecharts import options as opts
          from pyecharts.charts import Pie
          from random import randint

          from pyecharts.globals import ThemeType

          num = count
          lab = name
          (
          Pie(init_opts=opts.InitOpts(width='1650px',height='450px',theme=ThemeType.LIGHT))#默認(rèn)900,600
          .set_global_opts(
          title_opts=opts.TitleOpts(title="掃黑風(fēng)暴主演提及占比",
          title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(

          pos_top="3%", pos_left="33%",# 圖例位置調(diào)整
          ),)
          .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#餅圖
          .add(series_name='',center=[800, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#環(huán)圖
          .add(series_name='', center=[1300, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格爾圖
          ).render('../Html/pie_pyecharts4.html')

          效果圖


          8.評(píng)論內(nèi)容情感分析  SnowNLP.py

          import numpy as np
          from snownlp import SnowNLP
          import matplotlib.pyplot as plt

          f = open('../Spiders/content.txt', 'r', encoding='UTF-8')
          list = f.readlines()
          sentimentslist = []
          for i in list:
          s = SnowNLP(i)

          print(s.sentiments)
          sentimentslist.append(s.sentiments)
          plt.hist(sentimentslist, bins=np.arange(0, 1, 0.01), facecolor='g')
          plt.xlabel('Sentiments Probability')
          plt.ylabel('Quantity')
          plt.title('Analysis of Sentiments')
          plt.show()

          效果圖(情感各分?jǐn)?shù)段出現(xiàn)頻率)SnowNLP情感分析是基于情感詞典實(shí)現(xiàn)的,其簡(jiǎn)單的將文本分為兩類,積極和消極,返回值為情緒的概率,也就是情感評(píng)分在[0,1]之間,越接近1,情感表現(xiàn)越積極,越接近0,情感表現(xiàn)越消極。



          瀏覽 58
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  国产男同志av一区 | 国产成人久久久久 | 天天综合网永久入口 | 国产又爽 又黄 免费网站视频 | 立即播放黑人大屌日本女小嫩逼的视频 |