用Python分析《令人心動(dòng)的offer2》的13萬(wàn)條彈幕,網(wǎng)友們都在吐槽什么?
前言


數(shù)據(jù)獲取
#-*- coding = uft-8 -*-
#@Time : 2020/11/30 21:35
#@Author : 公眾號(hào) 菜J學(xué)Python
#@File : tengxun_danmu.py
import requests
import json
import time
import pandas as pd
target_id = "6130942571%26" #面試篇的target_id
vid = "%3Dt0034o74jpr" #面試篇的vid
df = pd.DataFrame()
for page in range(15, 3214, 30): #視頻時(shí)長(zhǎng)共3214秒
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36'}
url = 'https://mfm.video.qq.com/danmu?otype=json×tamp={0}&target_id={1}vid{2}&count=80'.format(page,target_id,vid)
print("正在提取第" + str(page) + "頁(yè)")
html = requests.get(url,headers = headers)
bs = json.loads(html.text,strict = False) #strict參數(shù)解決部分內(nèi)容json格式解析報(bào)錯(cuò)
time.sleep(1)
#遍歷獲取目標(biāo)字段
for i in bs['comments']:
content = i['content'] #彈幕
upcount = i['upcount'] #點(diǎn)贊數(shù)
user_degree =i['uservip_degree'] #會(huì)員等級(jí)
timepoint = i['timepoint'] #發(fā)布時(shí)間
comment_id = i['commentid'] #彈幕id
cache = pd.DataFrame({'彈幕':[content],'會(huì)員等級(jí)':[user_degree],'發(fā)布時(shí)間':[timepoint],'彈幕點(diǎn)贊':[upcount],'彈幕id':[comment_id]})
df = pd.concat([df,cache])
df.to_csv('面試篇.csv',encoding = 'utf-8')


數(shù)據(jù)清洗
合并彈幕數(shù)據(jù)
import pandas as pd
import numpy as np
df1 = pd.read_csv("/菜J學(xué)Python/彈幕/騰訊/令人心動(dòng)的offer/面試篇.csv")
df1["期數(shù)"] = "面試篇"
df2 = pd.read_csv("/菜J學(xué)Python/彈幕/騰訊/令人心動(dòng)的offer/第1期.csv")
df2["期數(shù)"] = "第1期"
df3 = pd.read_csv("/菜J學(xué)Python/彈幕/騰訊/令人心動(dòng)的offer/第2期.csv")
df3["期數(shù)"] = "第2期"
df4 = pd.read_csv("/菜J學(xué)Python/彈幕/騰訊/令人心動(dòng)的offer/第3期.csv")
df4["期數(shù)"] = "第3期"
df = pd.concat([df1,df2,df3,df4])
df.sample(10)

查看數(shù)據(jù)信息
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 133627 entries, 0 to 34923
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Unnamed: 0 133627 non-null int64
1 用戶名 49040 non-null object
2 內(nèi)容 133626 non-null object
3 會(huì)員等級(jí) 133627 non-null int64
4 評(píng)論時(shí)間點(diǎn) 133627 non-null int64
5 評(píng)論點(diǎn)贊 133627 non-null int64
6 評(píng)論id 133627 non-null int64
7 期數(shù) 133627 non-null object
dtypes: int64(5), object(3)
memory usage: 9.2+ MB
重命名字段
df = df.rename(columns={'用戶名':'用戶昵稱','內(nèi)容':'彈幕內(nèi)容','評(píng)論時(shí)間點(diǎn)':'發(fā)送時(shí)間','評(píng)論點(diǎn)贊':'彈幕點(diǎn)贊','期數(shù)':'所屬期數(shù)'})
過(guò)濾字段
#選擇需要分析的字段
df = df[["用戶昵稱","彈幕內(nèi)容","會(huì)員等級(jí)","發(fā)送時(shí)間","彈幕點(diǎn)贊","所屬期數(shù)"]]
缺失值處理
df["用戶昵稱"] = df["用戶昵稱"].fillna("無(wú)名氏")
發(fā)送時(shí)間處理
def time_change(seconds):
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
ss_time = "%d:%02d:%02d" % (h, m, s)
print(ss_time)
return ss_time
time_change(seconds=8888)
df["發(fā)送時(shí)間"] = df["發(fā)送時(shí)間"].apply(time_change)
df['發(fā)送時(shí)間'] = pd.to_datetime(df['發(fā)送時(shí)間'])
df['發(fā)送時(shí)間'] = df['發(fā)送時(shí)間'].apply(lambda x : x.strftime('%H:%M:%S'))
彈幕內(nèi)容處理
df["彈幕內(nèi)容"] = df["彈幕內(nèi)容"].astype("str")
#定義機(jī)械壓縮函數(shù)
def yasuo(st):
for i in range(1,int(len(st)/2)+1):
for j in range(len(st)):
if st[j:j+i] == st[j+i:j+2*i]:
k = j + i
while st[k:k+i] == st[k+i:k+2*i] and kk = k + i
st = st[:j] + st[k:]
return st
yasuo(st="菜J學(xué)Python真的真的真的很菜很菜")
#調(diào)用機(jī)械壓縮函數(shù)
df["彈幕內(nèi)容"] = df["彈幕內(nèi)容"].apply(yasuo)
df['彈幕內(nèi)容'] = df['彈幕內(nèi)容'].str.extract(r"([\u4e00-\u9fa5]+)") #提取中文內(nèi)容
df = df.dropna() #純表情彈幕直接刪除

數(shù)據(jù)分析
各期彈幕數(shù)量對(duì)比
import pyecharts.options as opts
from pyecharts.charts import *
from pyecharts.globals import ThemeType
df7 = df["所屬期數(shù)"].value_counts()
print(df7.index.to_list())
print(df7.to_list())
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_xaxis(df7.index.to_list())
.add_yaxis("",df7.to_list())
.set_global_opts(title_opts=opts.TitleOpts(title="各期彈幕數(shù)量",subtitle="數(shù)據(jù)來(lái)源:騰訊視屏 \t制圖:菜J學(xué)Python",pos_left = 'left'),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13)), #更改橫坐標(biāo)字體大小
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13)), #更改縱坐標(biāo)字體大小
)
.set_series_opts(label_opts=opts.LabelOpts(font_size=16,position='top'))
)
c.render_notebook()

誰(shuí)是彈幕發(fā)射機(jī)
df8 = df["用戶昵稱"].value_counts()[1:11]
df8 = df8.sort_values(ascending=True)
df8 = df8.tail(10)
print(df8.index.to_list())
print(df8.to_list())
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_xaxis(df8.index.to_list())
.add_yaxis("",df8.to_list()).reversal_axis() #X軸與y軸調(diào)換順序
.set_global_opts(title_opts=opts.TitleOpts(title="彈幕發(fā)送數(shù)量TOP10",subtitle="數(shù)據(jù)來(lái)源:騰訊視頻 \t制圖:菜J學(xué)Python",pos_left = 'left'),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13)), #更改橫坐標(biāo)字體大小
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13)), #更改縱坐標(biāo)字體大小
)
.set_series_opts(label_opts=opts.LabelOpts(font_size=16,position='right'))
)
c.render_notebook()

df[df["用戶昵稱"]=="想太多de貓"].sample(10)

會(huì)員等級(jí)分布
df2 = df["會(huì)員等級(jí)"].astype("str").value_counts()
print(df2)
df2 = df2.sort_values(ascending=False)
regions = df2.index.to_list()
values = df2.to_list()
c = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add("", list(zip(regions,values)))
.set_global_opts(legend_opts = opts.LegendOpts(is_show = False),title_opts=opts.TitleOpts(title="會(huì)員等級(jí)分布",subtitle="數(shù)據(jù)來(lái)源:騰訊視頻\t制圖:菜J學(xué)Python",pos_top="0.5%",pos_left = 'left'))
.set_series_opts(label_opts=opts.LabelOpts(formatter="等級(jí)占比:go7utgvlrp%",font_size=14))
)
c.render_notebook()

彈幕在討論些什么
# 定義分詞函數(shù)
def get_cut_words(content_series):
# 讀入停用詞表
stop_words = []
with open("/菜J學(xué)Python/offer/stop_words.txt", 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
stop_words.append(line.strip())
# 添加關(guān)鍵詞
my_words = ['撒老師', '范丞丞','第一季']
for i in my_words:
jieba.add_word(i)
# 自定義停用詞
my_stop_words = ['好像', '真的','感覺(jué)']
stop_words.extend(my_stop_words)
# 分詞
word_num = jieba.lcut(content_series.str.cat(sep='。'), cut_all=False)
# 條件篩選
word_num_selected = [i for i in word_num if i not in stop_words and len(i)>=2]
return word_num_selected
# 繪制詞云圖
text1 = get_cut_words(content_series=df['彈幕內(nèi)容'])
stylecloud.gen_stylecloud(text=' '.join(text1), max_words=100,
collocations=False,
font_path='字酷堂清楷體.ttf',
icon_name='fas fa-square',
size=653,
#palette='matplotlib.Inferno_9',
output_name='./offer.png')
Image(filename='./offer.png')

大家如何評(píng)論8個(gè)實(shí)習(xí)生


df8 = df["人物提及"].value_counts()[1:11]
print(df8.index.to_list())
print(df8.to_list())
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_xaxis(df8.index.to_list())
.add_yaxis("",df8.to_list())
.set_global_opts(title_opts=opts.TitleOpts(title="人物提及次數(shù)",subtitle="數(shù)據(jù)來(lái)源:騰訊視頻 \t制圖:菜J學(xué)Python",pos_left = 'left'),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13)), #更改橫坐標(biāo)字體大小
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13)), #更改縱坐標(biāo)字體大小
)
.set_series_opts(label_opts=opts.LabelOpts(font_size=16,position='top'))
)
c.render_notebook()


情感分析
import paddlehub as hub
#這里使用了百度開(kāi)源的成熟NLP模型來(lái)預(yù)測(cè)情感傾向
senta = hub.Module(name="senta_bilstm")
texts = df['彈幕內(nèi)容'].tolist()
input_data = {'text':texts}
res = senta.sentiment_classify(data=input_data)
df['情感分值'] = [x['positive_probs'] for x in res]
#重采樣至15分鐘
df.index = df['發(fā)送時(shí)間']
data = df.resample('15min').mean().reset_index()
#給數(shù)據(jù)表添加調(diào)色板
import seaborn as sns
color_map = sns.light_palette('orange', as_cmap=True) #light_palette調(diào)色板
data.style.background_gradient(color_map)

c = (
Line(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_xaxis(data["發(fā)送時(shí)間"].to_list())
.add_yaxis('情感傾向', list(data["情感分值"].round(2)), is_smooth=True,is_connect_nones=True,areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="情感傾向",subtitle="數(shù)據(jù)來(lái)源:騰訊視頻 \t制圖:菜J學(xué)Python",pos_left = 'left'))
)
c.render_notebook()

-END- 往期精彩推薦 --?? -- 1、小伙子不講武德,馬保國(guó)... -- 2、NBA球星數(shù)據(jù)查詢(GUI界面) -- 3、批量下載bilibili視頻 --? 留下你的“在看”唄!
評(píng)論
圖片
表情

