CSWin Transfomer:超越Swin Transformer的網(wǎng)絡(luò)來了
點(diǎn)藍(lán)色字關(guān)注“機(jī)器學(xué)習(xí)算法工程師”
設(shè)為星標(biāo),干貨直達(dá)!
近期,微軟亞研院繼Swin Transformer之后又推出了CSWin Transformer。和Swin Transformer一樣,CSWin Transformer也是一種local self-attention網(wǎng)絡(luò),相比Swin的方形window self-attention,CSWin采用的是十字形(cross-shaped)window self-attention,這使得CSWin Transformer的建模能力更強(qiáng),在分類和檢測等任務(wù)上也超過Swin Transformer,其中CSWin-L在語義分割數(shù)據(jù)集ADE20K上達(dá)到了SOTA:55.7 mIoU,超過Swin-L的53.5(不過目前微軟提出的無監(jiān)督訓(xùn)練模型BEiT-L已經(jīng)再次刷新了榜單:57.0 mIoU)。
CSWin Transformer和Swin Transformer一樣采用金字塔結(jié)構(gòu),共包括4個(gè)stage,各個(gè)stage的特征圖大小分別是原圖的1/4,1/8,1/16和1/32。CSWin Transformer主要有三個(gè)重要的改進(jìn):Overlapping Patch Embedding,Cross-Shaped Window Self-Attention和Locally-Enhanced Positional Encoding。
Overlapping Patch Embedding
PVT和Swin Transformer等較早的金字塔模型中patch embedding是沒有overlap的,patch size為的patch embedding操作上等價(jià)于stride和kernel size均為的卷積,所以模型開始的patch embedding就是一個(gè)stride為4的4x4卷積,而后面各個(gè)stage間的patch merging就是一個(gè)stride為2的2x2卷積。但是隨后的CvT和PVTv2都采用overlapping patch embedding,這個(gè)變動(dòng)是對(duì)性能有提升的。因此,CSWin Transformer也采用overlapping patch embedding:開始的patch embedding采用stride為4的7x7卷積,而后面各個(gè)stage間的patch merging采用stride為2的3x3卷積:
# patch embedding
stage1_conv_embed = nn.Sequential(
nn.Conv2d(in_chans, embed_dim, 7, 4, 2),
Rearrange('b c h w -> b (h w) c', h = img_size//4, w = img_size//4),
nn.LayerNorm(embed_dim)
)
# patch merging
class Merge_Block(nn.Module):
def __init__(self, dim, dim_out, norm_layer=nn.LayerNorm):
super().__init__()
self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1)
self.norm = norm_layer(dim_out)
def forward(self, x):
B, new_HW, C = x.shape
H = W = int(np.sqrt(new_HW))
x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
x = self.conv(x)
B, C = x.shape[:2]
x = x.view(B, C, -1).transpose(-2, -1).contiguous()
x = self.norm(x)
return x
注意,這里的卷積都需要包含zero padding來保持和原來一樣的輸出大小。
Cross-Shaped Window Self-Attention
CSWin Transformer最核心的部分就是cross-shaped window self-attention,如下所示,首先將self-attention的mutil-heads均分成兩組,一組做horizontal stripes self-attention,另外一組做vertical stripes self-attention。
所謂horizontal stripes self-attention就是沿著H維度將tokens分成水平條狀windows,對(duì)于輸入為HxW的tokens,記每個(gè)水平條狀window的寬度為,那么共產(chǎn)生個(gè)windows,每個(gè)window共包含個(gè)tokens;而vertical stripes self-attention就是沿著W維度將tokens分成豎直條狀windows,同樣地會(huì)產(chǎn)生個(gè)windows,每個(gè)window的tokens量為。具體的劃分窗口代碼和Swin transformer一樣,通過設(shè)定window的寬度和長度來實(shí)現(xiàn)兩組attention:
# 對(duì)于水平attention,H_sp=sw, W_sp=W
# 對(duì)于豎直attention,H_sp=H, W_sp=sw
def img2windows(img, H_sp, W_sp):
"""
img: B C H W
"""
B, C, H, W = img.shape
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C)
return img_perm
def windows2img(img_splits_hw, H_sp, W_sp, H, W):
"""
img_splits_hw: B' H W C
"""
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return img
兩組self-attention是并行的,完成后將tokens的特征concat在一起,這樣就構(gòu)成了CSW self-attention,最終效果就是在十字形窗口內(nèi)做attention,CSW self-attention的感受野要比常規(guī)的window attention的感受野更大。用公式表示的話就是:
可以得到CSWin attention的計(jì)算復(fù)雜度為,普通的window attention的計(jì)算復(fù)雜度是和成正比的,而global attention的計(jì)算復(fù)雜度和的平方成正比的,而CSWin attention的計(jì)算復(fù)雜度介于兩者之間。另外一點(diǎn)是CSWin transformer中不同的stage采用不同的,前面的stage采用較小的,而后面的stage采用較大,這其實(shí)也是漸進(jìn)式地?cái)U(kuò)大感受野。默認(rèn)4個(gè)stage的分別設(shè)為1, 2, 7, 7。CSWin attention的代碼實(shí)現(xiàn)如下所示:
class CSWinBlock(nn.Module):
def __init__(self, dim, reso, num_heads,
split_size=7, mlp_ratio=4., qkv_bias=False, qk_scale=None,
drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
last_stage=False):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.patches_resolution = reso
self.split_size = split_size # sw
self.mlp_ratio = mlp_ratio
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm1 = norm_layer(dim)
# 最后一個(gè)階段,實(shí)際上執(zhí)行的是global attention
if self.patches_resolution == split_size:
last_stage = True
if last_stage:
self.branch_num = 1 # 只有一個(gè)分支
else:
self.branch_num = 2 # 兩個(gè)分支,分別執(zhí)行兩組attention
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(drop)
# 最后一個(gè)階段,就只有一個(gè)window,不需要再分成兩組
if last_stage:
self.attns = nn.ModuleList([
LePEAttention(
dim, resolution=self.patches_resolution, idx = -1,
split_size=split_size, num_heads=num_heads, dim_out=dim,
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)])
else:
self.attns = nn.ModuleList([
LePEAttention(
dim//2, resolution=self.patches_resolution, idx = i,
split_size=split_size, num_heads=num_heads//2, dim_out=dim//2,
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)]) # idx區(qū)分兩組attention
mlp_hidden_dim = int(dim * mlp_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H = W = self.patches_resolution
B, L, C = x.shape
assert L == H * W, "flatten img_tokens has wrong size"
img = self.norm1(x)
qkv = self.qkv(img).reshape(B, -1, 3, C).permute(2, 0, 1, 3)
if self.branch_num == 2:
x1 = self.attns[0](qkv[:,:,:,:C//2]) # 一半heads執(zhí)行水平attention
x2 = self.attns[1](qkv[:,:,:,C//2:]) # 另外一半heads執(zhí)行豎直attention
attened_x = torch.cat([x1,x2], dim=2) # concat在一起
else:
attened_x = self.attns[0](qkv)
attened_x = self.proj(attened_x)
x = x + self.drop_path(attened_x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
從代碼實(shí)現(xiàn)可以看到兩點(diǎn),首先是對(duì)最后一個(gè)stage,由于輸入為已經(jīng)為7x7(輸入圖像為224x224),而也是7,那么其實(shí)只有一個(gè)window,就等于在做global attention,也就沒必要再分成兩組了。而對(duì)于前面3個(gè)stage,其實(shí)CSWin attention是分成兩支的,分別做兩種attention,雖然兩者是相對(duì)獨(dú)立的,但是也是分開做的,主要有兩個(gè)原因,一是兩種attention的窗口數(shù)量不一定相同(當(dāng)H和W不相等時(shí)),二是兩種attention的positional encoding也是不同的。另外CSWin attention和早期的Sequential Axial很類似,不過后者。論文中也對(duì)各種attention機(jī)制做了對(duì)比實(shí)驗(yàn),無論是分類,檢測還是分割,CSWin attention都是更勝一籌(這里CSWin采用non-overlapping patch embedding以及Swin的positional encoding來減少其它因素的干擾):
Locally-Enhanced Positional Encoding
CSWin Transformer采用的也是一種relative positional encoding(RPE),不過不同于常規(guī)RPE將位置信息加在attention的計(jì)算上,這里考慮將位置信息直接施加在上,如下所示:
考慮到的計(jì)算量較大,這里用一個(gè)depth-wise convolution(3x3卷積)來替換,這其實(shí)就主要考慮局部位置信息了,論文稱這種位置編碼為locally-enhanced positional encoding (LePE):
由于是卷積,所以LePE可以接受任意輸入大小,對(duì)下游任務(wù)如檢測和分割比較友好,其具體實(shí)現(xiàn)如下:
class LePEAttention(nn.Module):
def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0., qk_scale=None):
super().__init__()
self.dim = dim
self.dim_out = dim_out or dim
self.resolution = resolution
self.split_size = split_size
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
# 最后一個(gè)stage
if idx == -1:
H_sp, W_sp = self.resolution, self.resolution
elif idx == 0: # 水平attention
H_sp, W_sp = self.resolution, self.split_size
elif idx == 1: # 豎直attention
W_sp, H_sp = self.resolution, self.split_size
else:
print ("ERROR MODE", idx)
exit(0)
self.H_sp = H_sp
self.W_sp = W_sp
# LePE
self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim)
self.attn_drop = nn.Dropout(attn_drop)
def im2cswin(self, x):
B, N, C = x.shape
H = W = int(np.sqrt(N))
x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
x = img2windows(x, self.H_sp, self.W_sp)
x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
return x
def get_lepe(self, x, func):
B, N, C = x.shape
H = W = int(np.sqrt(N))
x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
H_sp, W_sp = self.H_sp, self.W_sp
x = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp) ### B', C, H', W'
lepe = func(x) ### B', C, H', W'
lepe = lepe.reshape(-1, self.num_heads, C // self.num_heads, H_sp * W_sp).permute(0, 1, 3, 2).contiguous()
x = x.reshape(-1, self.num_heads, C // self.num_heads, self.H_sp* self.W_sp).permute(0, 1, 3, 2).contiguous()
return x, lepe
def forward(self, qkv):
"""
x: B L C
"""
q,k,v = qkv[0], qkv[1], qkv[2]
### Img2Window
H = W = self.resolution
B, L, C = q.shape
assert L == H * W, "flatten img_tokens has wrong size"
q = self.im2cswin(q)
k = self.im2cswin(k)
v, lepe = self.get_lepe(v, self.get_v)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # B head N C @ B head C N --> B head N N
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
attn = self.attn_drop(attn)
x = (attn @ v) + lepe
x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C) # B head N N @ B head N C
### Window2Img
x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C) # B H' W' C
return x
論文中也對(duì)各種位置編碼方式做了對(duì)比,可以看到LePE在各個(gè)任務(wù)上效果均最好:
CSWin Transformer
CSWin Transformer的網(wǎng)絡(luò)設(shè)置如下,也包括4個(gè)不同大小的模型,其主要區(qū)別在channels和各個(gè)stages的depth:
在ImageNet分類上,CSWin Transformer要優(yōu)于Swin Transformer和Twins等模型:
在COCO實(shí)例分割任務(wù)上,CSWin Transformer的AP也要優(yōu)于Swin Transformer和Twins等模型:
在語義分割A(yù)DE20K數(shù)據(jù)集上,最終的CSWin-L的mIoU達(dá)到了55.7:
小結(jié)
相比Swin Transformer,CSWin Transformer更進(jìn)了一步,這也是local attention網(wǎng)絡(luò)在CV任務(wù)上的勝利。其實(shí)同期微軟團(tuán)隊(duì)還有另外一篇論文Focal Self-attention for Local-Global Interactions in Vision Transformers也取得了較好的性能,但是效果稍微比CSWin Transformer差一些(Focal-L在ADE20K數(shù)據(jù)集上達(dá)到了55.4)。
參考
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows PVTv2: Improved Baselines with Pyramid Vision Transformer Focal Self-attention for Local-Global Interactions in Vision Transformers
推薦閱讀
谷歌AI用30億數(shù)據(jù)訓(xùn)練了一個(gè)20億參數(shù)Vision Transformer模型,在ImageNet上達(dá)到新的SOTA!
"未來"的經(jīng)典之作ViT:transformer is all you need!
PVT:可用于密集任務(wù)backbone的金字塔視覺transformer!
漲點(diǎn)神器FixRes:兩次超越ImageNet數(shù)據(jù)集上的SOTA
不妨試試MoCo,來替換ImageNet上pretrain模型!
機(jī)器學(xué)習(xí)算法工程師
一個(gè)用心的公眾號(hào)


