<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          時(shí)序資料匯總:模型和常見庫對比

          共 3524字,需瀏覽 8分鐘

           ·

          2022-08-26 18:18

          Part1 領(lǐng)域介紹

          Time series is a series of data points indexed in time order.

          時(shí)間序列分析具體包括的任務(wù):

          • 檢索Indexing (query by content): given a time series and some similarity measure, find the nearest matching time series.
          • 聚類Clustering: find groups (clusters) of similar time series.
          • 分類Classification: assign a time series to a predefined class.
          • 分割Segmentation (Summarization): create an accurate approximation of a time series by reducing its dimensionality while retaining its essential features.
          • 預(yù)測Forecasting (Prediction): given a time series dataset up to a given time tn, forecast the next values.
          • 異常檢測Anomaly Detection: find abnormal data points or subsequences.
          • 因果分析Rules Discovery: find the rules that may govern associations between sets of time series or subsequences

          推薦教材

          • Forecasting: Principles and Practice,第三版(英文),第二版(中文)

          推薦公開課

          • Intel 時(shí)間序列分析:講授時(shí)間序列分析,以及用于預(yù)測、處理和識(shí)別順序數(shù)據(jù)的方法。
            • 時(shí)間序列和平穩(wěn)數(shù)據(jù)簡介
            • 數(shù)據(jù)平滑化、自相關(guān)性和自回歸積分滑動(dòng)平均 (ARIMA) 模型等應(yīng)用
            • 高級(jí)時(shí)間序列概念,如卡爾曼濾波器 (Kalman Filter) 和傅里葉變換 (Fourier Transformation)
            • 用于時(shí)間序列分析的深度學(xué)習(xí)架構(gòu)和方法

          Part2 時(shí)序Python庫


          ForecastingClasssificationAnomaly DetectionSegmentationTSFeature
          Prophet?



          Kats?
          ?
          ?
          GluonTS?
          ?
          ?
          NeuralProphet?
          ?
          ?
          arch?



          AtsPy?



          banpei

          ?

          cesium



          ?
          darts?



          PaddleTS?


          ?
          • Kats,推薦指數(shù):??
            • 主頁:https://facebookresearch.github.io/Kats/
            • Github:https://github.com/facebookresearch/Kats
          • darts,推薦指數(shù):??
            • 介紹:a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks.
            • 主頁:https://unit8co.github.io/darts/
            • Github:https://github.com/unit8co/darts
          • GluonTS,推薦指數(shù):????
            • 主頁:https://ts.gluon.ai/index.html
            • Github:https://github.com/awslabs/gluon-ts/
          • NeuralProphet,推薦指數(shù):????
            • 主頁:https://neuralprophet.com/
            • Github:https://github.com/ourownstory/neural_prophet
          • arch
            • 介紹:Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python.
            • 主頁:https://arch.readthedocs.io/en/latest/
            • Github:https://github.com/bashtage/arch
          • AtsPy
            • 介紹:Automated Time Series Models in Python
            • Github:https://github.com/firmai/atspy
          • banpei
            • 介紹:Anomaly detection library based on singular spectrum transformation
            • Github:https://github.com/tsurubee/banpei
          • cesium
            • 介紹:end-to-end machine learning platform for time-series, from calculation of features to model-building to predictions.
            • 主頁:https://cesium-ml.org/
            • Github:https://github.com/cesium-ml/cesium
          • pyfbad
            • Github:https://github.com/Teknasyon-Teknoloji/pyfbad

          更多的模型介紹可以查閱論文[arxiv 2021]A systematic review of Python packages for time series analysis.

          Part3 相關(guān)模型

          Time Series Forecasting

          ModelUnivariateMultivariateProbabilisticMultiple-series training
          ARIMA?
          ?
          VARIMA??

          AutoARIMA?


          ExponentialSmoothing?
          ?
          Theta and FourTheta?


          Prophet?
          ?
          FFT (Fast Fourier Transform)?


          RegressionModel (incl RandomForest, LinearRegressionModel and LightGBMModel)??
          ?
          RNNModel (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version????
          BlockRNNModel (incl. LSTM and GRU)????
          NBEATSModel????
          TCNModel????
          TransformerModel????
          TFTModel (Temporal Fusion Transformer)????
          Naive Baselines?


          Time Series Classification

          • LSTM FCN,LSTM Fully Convolutional Networks for Time Series Classification

          Anomaly Detection

          • [AAAI 2022] Towards a Rigorous Evaluation of Time-series Anomaly Detection

          Time Series Representation

          • [AAAI 2022] TS2Vec: Towards Universal Representation of Time Series

          Data Augmentation

          • [IJCAI 2021] Time Series Data Augmentation for Deep Learning: A Survey
          • [arxiv 2020] An empirical survey of data augmentation for time series classification with neural networks

          Part4 時(shí)序數(shù)據(jù)集

          • UCR Time Series Classification Archive
          • UEA & UCR Time Series Classification Repository
          干貨學(xué)習(xí),點(diǎn)三連
          瀏覽 57
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  国产女人18毛片水18精 | 日韩在线视频观看 | 日本韩国欧美18 | 亚洲影院在线观看 | 欧美男女操逼视频 |