<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          15篇「ICCV2021 Oral」最新論文搶先看!看當(dāng)下計算機視覺在研究什么?

          共 2685字,需瀏覽 6分鐘

           ·

          2021-08-09 00:08

          來源:專知

          本文約800字,建議閱讀10分鐘 
          本文整理來自Twitter、arXiv、知乎放出來的15篇最新ICCV Oral論文,方便大家搶先閱覽!

          最近計算機視覺三大頂會之一ICCV2021接收結(jié)果已經(jīng)公布,本次ICCV共計 6236 篇有效提交論文,其中有 1617 篇論文被接收,接收率為25.9%。小編在這里整理來自Twitter、arXiv、知乎放出來的15篇最新ICCV Oral論文,方便大家搶先閱覽!這些論文包括目標(biāo)檢測、域自適應(yīng)、因果推理、語義分割等。


          1. BARF:束調(diào)整神經(jīng)輻射場,BARF: Bundle-Adjusting Neural Radiance Fields



          論文鏈接:
          https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF/



          2. 端到端多模態(tài)理解的調(diào)制檢測,MDETR : Modulated Detection for End-to-End Multi-Modal Understanding



          https://www.zhuanzhi.ai/paper/945f0402f0332c41872bb7869e490be3


          3. 稠密對應(yīng)無監(jiān)督學(xué)習(xí),Warp Consistency for Unsupervised Learning of Dense Correspondences


          論文鏈接:
          https://www.zhuanzhi.ai/paper/678dd14c5c3ed4b6ab0c4c782ed0f135



          4. 目標(biāo)檢測和實例分割的Rank & Sort損失,Rank & Sort Loss for Object Detection and Instance Segmentation


          論文鏈接:
          https://arxiv.org/abs/2002.12213


          5. 遞歸條件高斯的有序無監(jiān)督域自適應(yīng), Recursively Conditional Gaussian for Ordinal Unsupervised Domain Adaptation


          論文鏈接:
          https://www.zhuanzhi.ai/paper/64e91d0014516f1556b0b8101808d141


          6. SimROD:一種簡單的魯棒目標(biāo)檢測自適應(yīng)方法,SimROD: A Simple Adaptation Method for Robust Object Detection


          論文鏈接:
          https://www.zhuanzhi.ai/paper/5ddf35892e95179e384ff22f84e52821


          7. 殘差對數(shù)似然估計的人體姿態(tài)回歸,Human Pose Regression with Residual Log-likelihood Estimation


          論文鏈接:
          https://www.zhuanzhi.ai/paper/e029b16a9f5bdfbf2b83993a1e4d3be2



          8. 無監(jiān)督域適應(yīng)的運輸因果機制,Transporting Causal Mechanisms for Unsupervised Domain Adaptation


          論文鏈接:
          https://www.zhuanzhi.ai/paper/57f86ec4e25735fa6a744ec9d1747851


          9. 深度假檢測的自一致性學(xué)習(xí),Learning Self-Consistency for Deepfake Detection


          論文鏈接:
          https://www.zhuanzhi.ai/paper/5115974ee34bc53b0e76fce5b5f5b264


          10. 自監(jiān)督對應(yīng)學(xué)習(xí),Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective


          論文鏈接:
          https://www.zhuanzhi.ai/paper/57095349f92f887dd0c496af3986197e


          11. 研究語義分割中無監(jiān)督領(lǐng)域自適應(yīng)的魯棒性,Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation


          論文鏈接:
          https://www.zhuanzhi.ai/paper/0b6a434549580ea778cdf816522b5784


          12. 用于穩(wěn)健姿態(tài)估計的三維人體運動模型,HuMoR: 3D Human Motion Model for Robust Pose Estimation

          論文鏈接:
          https://www.zhuanzhi.ai/paper/9f76eaa62f8a456a6acddb107e1c1569


          13. 半監(jiān)督語義分割,Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation


          論文鏈接:
          https://www.zhuanzhi.ai/paper/8400abaa3b0718f15fdf5b531c86eeda


          14. 通過跨域集成的魯棒性,Robustness via Cross-Domain Ensembles


          論文鏈接:
          https://www.zhuanzhi.ai/paper/2ab2815739ff76f5e17ac41dbb537175



          15. 弱監(jiān)督物體定位路由再思考,Just Ask: Learning to Answer Questions from Millions of Narrated Videos


          論文鏈接:
          https://www.zhuanzhi.ai/paper/fe5d9d7861cec92597a33dbf3178d776


          編輯:黃繼彥



          瀏覽 51
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  香蕉综合网 | 国产高清视频在线免费观看 | 精品中文字幕97A片免费视频 | 美女操国产 | 男女一区 |