<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          Python代碼|Python做數(shù)據(jù)可視化的代碼

          共 5362字,需瀏覽 11分鐘

           ·

          2020-06-26 23:23

          前言:

          從代碼中學習Python知識和Python與數(shù)據(jù)相關(guān)的知識,是一個有效的方法。例如:想了解Python做數(shù)據(jù)可視化的工作。我們可以從互聯(lián)網(wǎng)找一些Python做數(shù)據(jù)可視化的代碼進行閱讀,調(diào)試和遷移。這樣做的好處,突出實用性。同時,我們在結(jié)合聯(lián)想的學習方法,對所用到的可視化函數(shù),做個更深入地了解和使用。我借用《數(shù)據(jù)科學和人工智能》這個公眾號,分享一些我在實際的數(shù)據(jù)問題時,從網(wǎng)上找到的Python代碼,希望這些代碼對大家有作用和啟發(fā)。

          128155071cabd3c512cc009c469e4ab0.webp


          Python做數(shù)據(jù)可視化代碼

          #!/usr/bin/env?python
          #?coding:?utf-8

          #?In[1]:


          import?pandas?as?pd
          df?=?pd.read_csv('./datasets/temporal.csv')
          df.head(10)


          #?In[2]:


          df.describe()


          #?In[3]:


          df.info()


          #?In[5]:


          pd.set_option('display.max_rows',?500)
          pd.set_option('display.max_columns',?500)
          pd.set_option('display.width',?1000)


          #?In[6]:


          format_dict?=?{'data?science':'${0:,.2f}',?'Mes':'{:%m-%Y}',?'machine?learning':'{:.2%}'}
          #We?make?sure?that?the?Month?column?has?datetime?format
          df['Mes']?=?pd.to_datetime(df['Mes'])
          #We?apply?the?style?to?the?visualization
          df.head().style.format(format_dict)


          #?In[7]:


          format_dict?=?{'Mes':'{:%m-%Y}'}?#Simplified?format?dictionary?with?values?that?do?make?sense?for?our?data
          df.head().style.format(format_dict).highlight_max(color='darkgreen').highlight_min(color='#ff0000')


          #?In[8]:


          df.head(10).style.format(format_dict).background_gradient(subset=['data?science',?'machine?learning'],?cmap='BuGn')


          #?In[9]:


          df.head().style.format(format_dict).bar(color='red',?subset=['data?science',?'deep?learning'])


          #?In[10]:


          df.head(10).style.format(format_dict).background_gradient(subset=['data?science',?'machine?learning'],?cmap='BuGn').highlight_max(color='yellow')


          #?In[11]:


          from?pandas_profiling?import?ProfileReport
          prof?=?ProfileReport(df)
          prof.to_file(output_file='report.html')


          #?In[17]:


          import?matplotlib.pyplot?as?plt
          #The?parameter?label?is?to?indicate?the?legend.?This?doesn't?mean?that?it?will?be?shown,?we'll?have?to?use?another?command?that?I'll?explain?later.
          plt.plot(df['Mes'],?df['data_science'],?label='data?science')?


          #?In[14]:


          df


          #?In[18]:


          plt.plot(df['Mes'],?df['data_science'],?label='data?science')
          plt.plot(df['Mes'],?df['machine_learning'],?label='machine?learning')
          plt.plot(df['Mes'],?df['deep_learning'],?label='deep?learning')


          #?In[19]:


          plt.plot(df['Mes'],?df['data_science'],?label='data?science')
          plt.plot(df['Mes'],?df['machine_learning'],?label='machine?learning')
          plt.plot(df['Mes'],?df['deep_learning'],?label='deep?learning')
          plt.xlabel('Date')
          plt.ylabel('Popularity')
          plt.title('Popularity?of?AI?terms?by?date')
          plt.grid(True)
          plt.legend()


          #?In[20]:


          fig,?axes?=?plt.subplots(2,2)
          axes[0,?0].hist(df['data_science'])
          axes[0,?1].scatter(df['Mes'],?df['data_science'])
          axes[1,?0].plot(df['Mes'],?df['machine_learning'])
          axes[1,?1].plot(df['Mes'],?df['deep_learning'])


          #?In[21]:


          plt.plot(df['Mes'],?df['data_science'],?'r-')
          plt.plot(df['Mes'],?df['data_science']*2,?'bs')
          plt.plot(df['Mes'],?df['data_science']*3,?'g^')


          #?In[23]:


          plt.scatter(df['data_science'],?df['machine_learning'])


          #?In[24]:


          plt.bar(df['Mes'],?df['machine_learning'],?width=20)


          #?In[25]:


          plt.hist(df['deep_learning'],?bins=15)


          #?In[26]:


          plt.plot(df['Mes'],?df['data_science'],?label='data?science')
          plt.plot(df['Mes'],?df['machine_learning'],?label='machine?learning')
          plt.plot(df['Mes'],?df['deep_learning'],?label='deep?learning')
          plt.xlabel('Date')
          plt.ylabel('Popularity')
          plt.title('Popularity?of?AI?terms?by?date')
          plt.grid(True)
          plt.text(x='2010-01-01',?y=80,?s=r'$\lambda=1,?r^2=0.8$')?#Coordinates?use?the?same?units?as?the?graph
          plt.annotate('Notice?something?',?xy=('2014-01-01',?30),?xytext=('2006-01-01',?50),?arrowprops={'facecolor':'red',?'shrink':0.05})


          #?In[28]:


          import?seaborn?as?sns
          sns.set()
          sns.scatterplot(df['Mes'],?df['data_science'])


          #?In[29]:


          sns.relplot(x='Mes',?y='deep_learning',?hue='data_science',?size='machine_learning',?col='categorical',?data=df)


          #?In[30]:


          sns.heatmap(df.corr(),?annot=True,?fmt='.2f')


          #?In[31]:


          sns.pairplot(df)


          #?In[32]:


          sns.pairplot(df,?hue='categorical')


          #?In[34]:


          sns.jointplot(x='data_science',?y='machine_learning',?data=df)


          #?In[35]:


          sns.catplot(x='categorical',?y='data_science',?kind='violin',?data=df)


          #?In[36]:


          fig,?axes?=?plt.subplots(1,?2,?sharey=True,?figsize=(8,?4))
          sns.scatterplot(x="Mes",?y="deep_learning",?hue="categorical",?data=df,?ax=axes[0])
          axes[0].set_title('Deep?Learning')
          sns.scatterplot(x="Mes",?y="machine_learning",?hue="categorical",?data=df,?ax=axes[1])
          axes[1].set_title('Machine?Learning')


          #?In[37]:


          from?bokeh.plotting?import?figure,?output_file,?save
          output_file('data_science_popularity.html')


          #?In[38]:


          p?=?figure(title='data?science',?x_axis_label='Mes',?y_axis_label='data?science')
          p.line(df['Mes'],?df['data_science'],?legend='popularity',?line_width=2)
          save(p)


          #?In[40]:


          from?bokeh.layouts?import?gridplot
          output_file('multiple_graphs.html')
          s1?=?figure(width=250,?plot_height=250,?title='data?science')
          s1.circle(df['Mes'],?df['data_science'],?size=10,?color='navy',?alpha=0.5)
          s2?=?figure(width=250,?height=250,?x_range=s1.x_range,?y_range=s1.y_range,?title='machine?learning')?#share?both?axis?range
          s2.triangle(df['Mes'],?df['machine_learning'],?size=10,?color='red',?alpha=0.5)
          s3?=?figure(width=250,?height=250,?x_range=s1.x_range,?title='deep?learning')?#share?only?one?axis?range
          s3.square(df['Mes'],?df['deep_learning'],?size=5,?color='green',?alpha=0.5)
          p?=?gridplot([[s1,?s2,?s3]])
          save(p)


          #?參考資料:
          #?-?https://towardsdatascience.com/complete-guide-to-data-visualization-with-python-2dd74df12b5e


          這份Python代碼我經(jīng)過notebook調(diào)試測試通過的。

          用到Python的庫有pandas, pandas_profiling, matplotlib, seaborn和bokeh。

          配套的數(shù)據(jù)集和notebook下載鏈接。

          http://47.112.229.252:80/f/97e449826d0a44468a8e/

          我創(chuàng)建了Python語言群,需要加入的朋友,請掃碼添加我的微信,備注Python語言。

          瀏覽 41
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  日本高潮喷水视频 | 在线一区二区三区四区 | 麻豆网站-麻豆午夜在线-成人AV | 中文字幕乱码一二三区 | 欧美一区二区 |