<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          分布式訓(xùn)練框架Horovod初步學(xué)習(xí)

          共 5140字,需瀏覽 11分鐘

           ·

          2020-11-06 09:05

          簡(jiǎn)介

          Horovod 是 TensorFlow、Keras、PyTorch 和 Apache MXNet 的分布式深度學(xué)習(xí)訓(xùn)練框架。Horovod 的目標(biāo)是使分布式深度學(xué)習(xí)快速且易于使用。

          簡(jiǎn)單來說就是為這些框架提供分布式支持,比如有一個(gè)需求,由于數(shù)據(jù)量過大(千萬級(jí)),想要在128個(gè)GPU上運(yùn)行,以便于快速得到結(jié)果,這時(shí)候就可以用horovod,只需要簡(jiǎn)單改不多的代碼,就可以將原來在單GPU上跑的模型,并行跑在128個(gè)GPU上。

          安裝

          • 安裝CMake:https://cmake.org/install/

          • 如果您安裝了 PyPI 中的 TensorFlow,請(qǐng)確保Tensorflow已安裝 或安裝了g++-4.8.5``g++-4.9

          • 如果您從PyPI:https://pypi.org/project/torch 安裝了 PyTorch,請(qǐng)確保已安裝了g++-4.9

          • 如果已安裝來自Conda 的任一包,請(qǐng)確保已安裝 Conda 中的gxx_linux-64

          • 安裝 pip horovod 在 CPU 上運(yùn)行:

          $?pip?install?horovod
          • 要使用 NCCL 在 GPU 上運(yùn)行:
          $?HOROVOD_GPU_OPERATIONS=NCCL?pip?install?horovod

          有關(guān)使用 GPU 支持安裝 Horovod 的更多詳細(xì)信息,請(qǐng)閱讀GPU 上的 Horovod。

          名詞解釋

          rank:

          表示進(jìn)程序號(hào),用于進(jìn)程間通訊,表征進(jìn)程優(yōu)先級(jí)。rank = 0 的主機(jī)為 master 節(jié)點(diǎn)。

          local_rank:

          進(jìn)程內(nèi),GPU 編號(hào),非顯式參數(shù),由 torch.distributed.launch 內(nèi)部指定。比方說, rank = 3,local_rank = 0 表示第 3 個(gè)進(jìn)程內(nèi)的第 1 塊 GPU。

          allreduce:

          累加所有數(shù)據(jù),并同步到所有節(jié)點(diǎn)的操作

          allgather:

          收集所有數(shù)據(jù),并同步到所有節(jié)點(diǎn)的操作,完成后每個(gè)節(jié)點(diǎn)都包含所有節(jié)點(diǎn)的數(shù)據(jù),并且這些數(shù)據(jù)單獨(dú)存在

          broadcast:

          將數(shù)據(jù)(需要由根節(jié)點(diǎn)確認(rèn))從一個(gè)節(jié)點(diǎn)傳播到其他所有節(jié)點(diǎn)的操作

          使用指南

          添加以下步驟:

          1. hvd.init()用于初始化horovod

          2. 將每個(gè)GPU固定給單個(gè)進(jìn)程處理,以避免資源競(jìng)爭(zhēng)。

            每個(gè)進(jìn)程設(shè)置為一個(gè)GPU,通過設(shè)置local rank參數(shù),服務(wù)器上的第一個(gè)進(jìn)程將分配第一個(gè) GPU,第二個(gè)進(jìn)程將分配第二個(gè) GPU,等等

          ???if?torch.cuda.is_available():
          ???????torch.cuda.set_device(hvd.local_rank())
          1. 根據(jù)線程個(gè)數(shù)縮放學(xué)習(xí)率

          2. 將優(yōu)化器包裝在hvd.DistributedOptimizer中。

            分布式優(yōu)化器將梯度計(jì)算委托給原始優(yōu)化器,使用allduceallgather來平均梯度,然后應(yīng)用這些平均梯度。

          3. 將初始變量的狀態(tài)從rank 0廣播至其他進(jìn)程。需要保證初始化的一致性。

          4. 修改權(quán)重保存部分源碼,只通過worker 0保存權(quán)重,防止由于多線程操作導(dǎo)致的沖突。

          Tensorflow + Horovod

          這里Tensorflow是1.x版本,更加穩(wěn)定一些,以下是一個(gè)修改示例。

          import?tensorflow?as?tf
          import?horovod.tensorflow?as?hvd


          #?Initialize?Horovod
          hvd.init()

          #?Pin?GPU?to?be?used?to?process?local?rank?(one?GPU?per?process)
          config?=?tf.ConfigProto()
          config.gpu_options.visible_device_list?=?str(hvd.local_rank())

          #?Build?model...
          loss?=?...
          opt?=?tf.train.AdagradOptimizer(0.01?*?hvd.size())

          #?Add?Horovod?Distributed?Optimizer
          opt?=?hvd.DistributedOptimizer(opt)

          #?Add?hook?to?broadcast?variables?from?rank?0?to?all?other?processes?during
          #?initialization.
          hooks?=?[hvd.BroadcastGlobalVariablesHook(0)]

          #?Make?training?operation
          train_op?=?opt.minimize(loss)

          #?Save?checkpoints?only?on?worker?0?to?prevent?other?workers?from?corrupting?them.
          checkpoint_dir?=?'/tmp/train_logs'?if?hvd.rank()?==?0?else?None

          #?The?MonitoredTrainingSession?takes?care?of?session?initialization,
          #?restoring?from?a?checkpoint,?saving?to?a?checkpoint,?and?closing?when?done
          #?or?an?error?occurs.
          with?tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
          ???????????????????????????????????????config=config,
          ???????????????????????????????????????hooks=hooks)?as?mon_sess:
          ??while?not?mon_sess.should_stop():
          ????#?Perform?synchronous?training.
          ????mon_sess.run(train_op)

          完整代碼如下:

          import?os
          import?errno
          import?tensorflow?as?tf
          import?horovod.tensorflow?as?hvd
          import?numpy?as?np
          import?argparse

          from?tensorflow?import?keras

          layers?=?tf.layers

          tf.logging.set_verbosity(tf.logging.INFO)

          #?Training?settings
          parser?=?argparse.ArgumentParser(description='Tensorflow?MNIST?Example')
          parser.add_argument('--use-adasum',?action='store_true',?default=False,
          ????????????????????help='use?adasum?algorithm?to?do?reduction')
          parser.add_argument('--gradient-predivide-factor',?type=float,?default=1.0,
          ????????????????????help='apply?gradient?predivide?factor?in?optimizer?(default:?1.0)')
          args?=?parser.parse_args()

          def?conv_model(feature,?target,?mode):
          ????"""2-layer?convolution?model."""
          ????#?Convert?the?target?to?a?one-hot?tensor?of?shape?(batch_size,?10)?and
          ????#?with?a?on-value?of?1?for?each?one-hot?vector?of?length?10.
          ????target?=?tf.one_hot(tf.cast(target,?tf.int32),?10,?1,?0)

          ????#?Reshape?feature?to?4d?tensor?with?2nd?and?3rd?dimensions?being
          ????#?image?width?and?height?final?dimension?being?the?number?of?color?channels.
          ????feature?=?tf.reshape(feature,?[-1,?28,?28,?1])

          ????#?First?conv?layer?will?compute?32?features?for?each?5x5?patch
          ????with?tf.variable_scope('conv_layer1'):
          ????????h_conv1?=?layers.conv2d(feature,?32,?kernel_size=[5,?5],
          ????????????????????????????????activation=tf.nn.relu,?padding="SAME")
          ????????h_pool1?=?tf.nn.max_pool(
          ????????????h_conv1,?ksize=[1,?2,?2,?1],?strides=[1,?2,?2,?1],?padding='SAME')

          ????#?Second?conv?layer?will?compute?64?features?for?each?5x5?patch.
          ????with?tf.variable_scope('conv_layer2'):
          ????????h_conv2?=?layers.conv2d(h_pool1,?64,?kernel_size=[5,?5],
          ????????????????????????????????activation=tf.nn.relu,?padding="SAME")
          ????????h_pool2?=?tf.nn.max_pool(
          ????????????h_conv2,?ksize=[1,?2,?2,?1],?strides=[1,?2,?2,?1],?padding='SAME')
          ????????#?reshape?tensor?into?a?batch?of?vectors
          ????????h_pool2_flat?=?tf.reshape(h_pool2,?[-1,?7?*?7?*?64])

          ????#?Densely?connected?layer?with?1024?neurons.
          ????h_fc1?=?layers.dropout(
          ????????layers.dense(h_pool2_flat,?1024,?activation=tf.nn.relu),
          ????????rate=0.5,?training=mode?==?tf.estimator.ModeKeys.TRAIN)

          ????#?Compute?logits?(1?per?class)?and?compute?loss.
          ????logits?=?layers.dense(h_fc1,?10,?activation=None)
          ????loss?=?tf.losses.softmax_cross_entropy(target,?logits)

          ????return?tf.argmax(logits,?1),?loss


          def?train_input_generator(x_train,?y_train,?batch_size=64):
          ????assert?len(x_train)?==?len(y_train)
          ????while?True:
          ????????p?=?np.random.permutation(len(x_train))
          ????????x_train,?y_train?=?x_train[p],?y_train[p]
          ????????index?=?0
          ????????while?index?<=?len(x_train)?-?batch_size:
          ????????????yield?x_train[index:index?+?batch_size],?\
          ??????????????????y_train[index:index?+?batch_size],
          ????????????index?+=?batch_size


          def?main(_):
          ????#?Horovod:?initialize?Horovod.
          ????hvd.init()

          ????#?Keras?automatically?creates?a?cache?directory?in?~/.keras/datasets?for
          ????#?storing?the?downloaded?MNIST?data.?This?creates?a?race
          ????#?condition?among?the?workers?that?share?the?same?filesystem.?If?the
          ????#?directory?already?exists?by?the?time?this?worker?gets?around?to?creating
          ????#?it,?ignore?the?resulting?exception?and?continue.
          ????cache_dir?=?os.path.join(os.path.expanduser('~'),?'.keras',?'datasets')
          ????if?not?os.path.exists(cache_dir):
          ????????try:
          ????????????os.mkdir(cache_dir)
          ????????except?OSError?as?e:
          ????????????if?e.errno?==?errno.EEXIST?and?os.path.isdir(cache_dir):
          ????????????????pass
          ????????????else:
          ????????????????raise

          ????#?Download?and?load?MNIST?dataset.
          ????(x_train,?y_train),?(x_test,?y_test)?=?\
          ????????keras.datasets.mnist.load_data('MNIST-data-%d'?%?hvd.rank())

          ????#?The?shape?of?downloaded?data?is?(-1,?28,?28),?hence?we?need?to?reshape?it
          ????#?into?(-1,?784)?to?feed?into?our?network.?Also,?need?to?normalize?the
          ????#?features?between?0?and?1.
          ????x_train?=?np.reshape(x_train,?(-1,?784))?/?255.0
          ????x_test?=?np.reshape(x_test,?(-1,?784))?/?255.0

          ????#?Build?model...
          ????with?tf.name_scope('input'):
          ????????image?=?tf.placeholder(tf.float32,?[None,?784],?name='image')
          ????????label?=?tf.placeholder(tf.float32,?[None],?name='label')
          ????predict,?loss?=?conv_model(image,?label,?tf.estimator.ModeKeys.TRAIN)

          ????lr_scaler?=?hvd.size()
          ????#?By?default,?Adasum?doesn't?need?scaling?when?increasing?batch?size.?If?used?with?NCCL,
          ????#?scale?lr?by?local_size
          ????if?args.use_adasum:
          ????????lr_scaler?=?hvd.local_size()?if?hvd.nccl_built()?else?1

          ????#?Horovod:?adjust?learning?rate?based?on?lr_scaler.
          ????opt?=?tf.train.AdamOptimizer(0.001?*?lr_scaler)

          ????#?Horovod:?add?Horovod?Distributed?Optimizer.
          ????opt?=?hvd.DistributedOptimizer(opt,?op=hvd.Adasum?if?args.use_adasum?else?hvd.Average,
          ???????????????????????????????????gradient_predivide_factor=args.gradient_predivide_factor)

          ????global_step?=?tf.train.get_or_create_global_step()
          ????train_op?=?opt.minimize(loss,?global_step=global_step)

          ????hooks?=?[
          ????????#?Horovod:?BroadcastGlobalVariablesHook?broadcasts?initial?variable?states
          ????????#?from?rank?0?to?all?other?processes.?This?is?necessary?to?ensure?consistent
          ????????#?initialization?of?all?workers?when?training?is?started?with?random?weights
          ????????#?or?restored?from?a?checkpoint.
          ????????hvd.BroadcastGlobalVariablesHook(0),

          ????????#?Horovod:?adjust?number?of?steps?based?on?number?of?GPUs.
          ????????tf.train.StopAtStepHook(last_step=20000?//?hvd.size()),

          ????????tf.train.LoggingTensorHook(tensors={'step':?global_step,?'loss':?loss},
          ???????????????????????????????????every_n_iter=10),
          ????]

          ????#?Horovod:?pin?GPU?to?be?used?to?process?local?rank?(one?GPU?per?process)
          ????config?=?tf.ConfigProto()
          ????config.gpu_options.allow_growth?=?True
          ????config.gpu_options.visible_device_list?=?str(hvd.local_rank())

          ????#?Horovod:?save?checkpoints?only?on?worker?0?to?prevent?other?workers?from
          ????#?corrupting?them.
          ????checkpoint_dir?=?'./checkpoints'?if?hvd.rank()?==?0?else?None
          ????training_batch_generator?=?train_input_generator(x_train,
          ?????????????????????????????????????????????????????y_train,?batch_size=100)
          ????#?The?MonitoredTrainingSession?takes?care?of?session?initialization,
          ????#?restoring?from?a?checkpoint,?saving?to?a?checkpoint,?and?closing?when?done
          ????#?or?an?error?occurs.
          ????with?tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
          ???????????????????????????????????????????hooks=hooks,
          ???????????????????????????????????????????config=config)?as?mon_sess:
          ????????while?not?mon_sess.should_stop():
          ????????????#?Run?a?training?step?synchronously.
          ????????????image_,?label_?=?next(training_batch_generator)
          ????????????mon_sess.run(train_op,?feed_dict={image:?image_,?label:?label_})


          if?__name__?==?"__main__":
          ????tf.app.run()

          PyTorch + Horovod

          1. 運(yùn)行hvd.init()

          2. 將每個(gè) GPU 固定到單個(gè)進(jìn)程。

            每個(gè)進(jìn)程的典型設(shè)置為一個(gè) GPU,請(qǐng)將此設(shè)置為本地排名。服務(wù)器上的第一個(gè)進(jìn)程將分配第一個(gè) GPU,第二個(gè)進(jìn)程將分配第二個(gè) GPU,等等。

            if?torch.cuda.is_available():
            ????torch.cuda.set_device(hvd.local_rank())
          3. 按線程數(shù)縮放學(xué)習(xí)率。

            同步分布式培訓(xùn)中的有效批次大小按工作人員數(shù)量進(jìn)行縮放。學(xué)習(xí)率的提高彌補(bǔ)了批次大小的增加。

          4. 將優(yōu)化器包裝在hvd.DistributedOptimizer 分布式優(yōu)化器將梯度計(jì)算委托給原始優(yōu)化器,使用allduceall 聚集來平均梯度,然后應(yīng)用這些平均梯度。

          5. 將初始變量狀態(tài)從排名 0 廣播到所有其他進(jìn)程:

          hvd.broadcast_parameters(model.state_dict(),?root_rank=0)
          hvd.broadcast_optimizer_state(optimizer,?root_rank=0)

          在使用隨機(jī)權(quán)重開始訓(xùn)練或從檢查點(diǎn)恢復(fù)訓(xùn)練時(shí),這對(duì)于確保所有工作人員的一致初始化是必要的。

          • 修改代碼以僅保存工作線程 0 上的檢查點(diǎn),以防止其他工作人員損壞它們。

          通過使用 保護(hù)模型檢查點(diǎn)代碼,實(shí)現(xiàn)此目的。hvd.rank() != 0

          import?torch
          import?horovod.torch?as?hvd

          #?Initialize?Horovod
          hvd.init()

          #?Pin?GPU?to?be?used?to?process?local?rank?(one?GPU?per?process)
          torch.cuda.set_device(hvd.local_rank())

          #?Define?dataset...
          train_dataset?=?...

          #?Partition?dataset?among?workers?using?DistributedSampler
          train_sampler?=?torch.utils.data.distributed.DistributedSampler(
          ????train_dataset,?num_replicas=hvd.size(),?rank=hvd.rank())

          train_loader?=?torch.utils.data.DataLoader(train_dataset,?batch_size=...,?sampler=train_sampler)

          #?Build?model...
          model?=?...
          model.cuda()

          optimizer?=?optim.SGD(model.parameters())

          #?Add?Horovod?Distributed?Optimizer
          optimizer?=?hvd.DistributedOptimizer(optimizer,?named_parameters=model.named_parameters())

          #?Broadcast?parameters?from?rank?0?to?all?other?processes.
          hvd.broadcast_parameters(model.state_dict(),?root_rank=0)

          for?epoch?in?range(100):
          ???for?batch_idx,?(data,?target)?in?enumerate(train_loader):
          ???????optimizer.zero_grad()
          ???????output?=?model(data)
          ???????loss?=?F.nll_loss(output,?target)
          ???????loss.backward()
          ???????optimizer.step()
          ???????if?batch_idx?%?args.log_interval?==?0:
          ???????????print('Train?Epoch:?{}?[{}/{}]\tLoss:?{}'.format(
          ???????????????epoch,?batch_idx?*?len(data),?len(train_sampler),?loss.item()))

          完整代碼:

          import?argparse
          import?torch.multiprocessing?as?mp
          import?torch.nn?as?nn
          import?torch.nn.functional?as?F
          import?torch.optim?as?optim
          from?torchvision?import?datasets,?transforms
          import?torch.utils.data.distributed
          import?horovod.torch?as?hvd

          #?Training?settings
          parser?=?argparse.ArgumentParser(description='PyTorch?MNIST?Example')
          parser.add_argument('--batch-size',?type=int,?default=64,?metavar='N',
          ????????????????????help='input?batch?size?for?training?(default:?64)')
          parser.add_argument('--test-batch-size',?type=int,?default=1000,?metavar='N',
          ????????????????????help='input?batch?size?for?testing?(default:?1000)')
          parser.add_argument('--epochs',?type=int,?default=10,?metavar='N',
          ????????????????????help='number?of?epochs?to?train?(default:?10)')
          parser.add_argument('--lr',?type=float,?default=0.01,?metavar='LR',
          ????????????????????help='learning?rate?(default:?0.01)')
          parser.add_argument('--momentum',?type=float,?default=0.5,?metavar='M',
          ????????????????????help='SGD?momentum?(default:?0.5)')
          parser.add_argument('--no-cuda',?action='store_true',?default=False,
          ????????????????????help='disables?CUDA?training')
          parser.add_argument('--seed',?type=int,?default=42,?metavar='S',
          ????????????????????help='random?seed?(default:?42)')
          parser.add_argument('--log-interval',?type=int,?default=10,?metavar='N',
          ????????????????????help='how?many?batches?to?wait?before?logging?training?status')
          parser.add_argument('--fp16-allreduce',?action='store_true',?default=False,
          ????????????????????help='use?fp16?compression?during?allreduce')
          parser.add_argument('--use-adasum',?action='store_true',?default=False,
          ????????????????????help='use?adasum?algorithm?to?do?reduction')
          parser.add_argument('--gradient-predivide-factor',?type=float,?default=1.0,
          ????????????????????help='apply?gradient?predivide?factor?in?optimizer?(default:?1.0)')


          class?Net(nn.Module):
          ????def?__init__(self):
          ????????super(Net,?self).__init__()
          ????????self.conv1?=?nn.Conv2d(1,?10,?kernel_size=5)
          ????????self.conv2?=?nn.Conv2d(10,?20,?kernel_size=5)
          ????????self.conv2_drop?=?nn.Dropout2d()
          ????????self.fc1?=?nn.Linear(320,?50)
          ????????self.fc2?=?nn.Linear(50,?10)

          ????def?forward(self,?x):
          ????????x?=?F.relu(F.max_pool2d(self.conv1(x),?2))
          ????????x?=?F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)),?2))
          ????????x?=?x.view(-1,?320)
          ????????x?=?F.relu(self.fc1(x))
          ????????x?=?F.dropout(x,?training=self.training)
          ????????x?=?self.fc2(x)
          ????????return?F.log_softmax(x)


          def?train(epoch):
          ????model.train()
          ????#?Horovod:?set?epoch?to?sampler?for?shuffling.
          ????train_sampler.set_epoch(epoch)
          ????for?batch_idx,?(data,?target)?in?enumerate(train_loader):
          ????????if?args.cuda:
          ????????????data,?target?=?data.cuda(),?target.cuda()
          ????????optimizer.zero_grad()
          ????????output?=?model(data)
          ????????loss?=?F.nll_loss(output,?target)
          ????????loss.backward()
          ????????optimizer.step()
          ????????if?batch_idx?%?args.log_interval?==?0:
          ????????????#?Horovod:?use?train_sampler?to?determine?the?number?of?examples?in
          ????????????#?this?worker's?partition.
          ????????????print('Train?Epoch:?{}?[{}/{}?({:.0f}%)]\tLoss:?{:.6f}'.format(
          ????????????????epoch,?batch_idx?*?len(data),?len(train_sampler),
          ????????????????100.?*?batch_idx?/?len(train_loader),?loss.item()))


          def?metric_average(val,?name):
          ????tensor?=?torch.tensor(val)
          ????avg_tensor?=?hvd.allreduce(tensor,?name=name)
          ????return?avg_tensor.item()


          def?test():
          ????model.eval()
          ????test_loss?=?0.
          ????test_accuracy?=?0.
          ????for?data,?target?in?test_loader:
          ????????if?args.cuda:
          ????????????data,?target?=?data.cuda(),?target.cuda()
          ????????output?=?model(data)
          ????????#?sum?up?batch?loss
          ????????test_loss?+=?F.nll_loss(output,?target,?size_average=False).item()
          ????????#?get?the?index?of?the?max?log-probability
          ????????pred?=?output.data.max(1,?keepdim=True)[1]
          ????????test_accuracy?+=?pred.eq(target.data.view_as(pred)).cpu().float().sum()

          ????#?Horovod:?use?test_sampler?to?determine?the?number?of?examples?in
          ????#?this?worker's?partition.
          ????test_loss?/=?len(test_sampler)
          ????test_accuracy?/=?len(test_sampler)

          ????#?Horovod:?average?metric?values?across?workers.
          ????test_loss?=?metric_average(test_loss,?'avg_loss')
          ????test_accuracy?=?metric_average(test_accuracy,?'avg_accuracy')

          ????#?Horovod:?print?output?only?on?first?rank.
          ????if?hvd.rank()?==?0:
          ????????print('\nTest?set:?Average?loss:?{:.4f},?Accuracy:?{:.2f}%\n'.format(
          ????????????test_loss,?100.?*?test_accuracy))


          if?__name__?==?'__main__':
          ????args?=?parser.parse_args()
          ????args.cuda?=?not?args.no_cuda?and?torch.cuda.is_available()

          ????#?Horovod:?initialize?library.
          ????hvd.init()
          ????torch.manual_seed(args.seed)

          ????if?args.cuda:
          ????????#?Horovod:?pin?GPU?to?local?rank.
          ????????torch.cuda.set_device(hvd.local_rank())
          ????????torch.cuda.manual_seed(args.seed)


          ????#?Horovod:?limit?#?of?CPU?threads?to?be?used?per?worker.
          ????torch.set_num_threads(1)

          ????kwargs?=?{'num_workers':?1,?'pin_memory':?True}?if?args.cuda?else?{}
          ????#?When?supported,?use?'forkserver'?to?spawn?dataloader?workers?instead?of?'fork'?to?prevent
          ????#?issues?with?Infiniband?implementations?that?are?not?fork-safe
          ????if?(kwargs.get('num_workers',?0)?>?0?and?hasattr(mp,?'_supports_context')?and
          ????????????mp._supports_context?and?'forkserver'?in?mp.get_all_start_methods()):
          ????????kwargs['multiprocessing_context']?=?'forkserver'

          ????train_dataset?=?\
          ????????datasets.MNIST('data-%d'?%?hvd.rank(),?train=True,?download=True,
          ???????????????????????transform=transforms.Compose([
          ???????????????????????????transforms.ToTensor(),
          ???????????????????????????transforms.Normalize((0.1307,),?(0.3081,))
          ???????????????????????]))
          ????#?Horovod:?use?DistributedSampler?to?partition?the?training?data.
          ????train_sampler?=?torch.utils.data.distributed.DistributedSampler(
          ????????train_dataset,?num_replicas=hvd.size(),?rank=hvd.rank())
          ????train_loader?=?torch.utils.data.DataLoader(
          ????????train_dataset,?batch_size=args.batch_size,?sampler=train_sampler,?**kwargs)

          ????test_dataset?=?\
          ????????datasets.MNIST('data-%d'?%?hvd.rank(),?train=False,?transform=transforms.Compose([
          ????????????transforms.ToTensor(),
          ????????????transforms.Normalize((0.1307,),?(0.3081,))
          ????????]))
          ????#?Horovod:?use?DistributedSampler?to?partition?the?test?data.
          ????test_sampler?=?torch.utils.data.distributed.DistributedSampler(
          ????????test_dataset,?num_replicas=hvd.size(),?rank=hvd.rank())
          ????test_loader?=?torch.utils.data.DataLoader(test_dataset,?batch_size=args.test_batch_size,
          ??????????????????????????????????????????????sampler=test_sampler,?**kwargs)

          ????model?=?Net()

          ????#?By?default,?Adasum?doesn't?need?scaling?up?learning?rate.
          ????lr_scaler?=?hvd.size()?if?not?args.use_adasum?else?1

          ????if?args.cuda:
          ????????#?Move?model?to?GPU.
          ????????model.cuda()
          ????????#?If?using?GPU?Adasum?allreduce,?scale?learning?rate?by?local_size.
          ????????if?args.use_adasum?and?hvd.nccl_built():
          ????????????lr_scaler?=?hvd.local_size()

          ????#?Horovod:?scale?learning?rate?by?lr_scaler.
          ????optimizer?=?optim.SGD(model.parameters(),?lr=args.lr?*?lr_scaler,
          ??????????????????????????momentum=args.momentum)

          ????#?Horovod:?broadcast?parameters?&?optimizer?state.
          ????hvd.broadcast_parameters(model.state_dict(),?root_rank=0)
          ????hvd.broadcast_optimizer_state(optimizer,?root_rank=0)

          ????#?Horovod:?(optional)?compression?algorithm.
          ????compression?=?hvd.Compression.fp16?if?args.fp16_allreduce?else?hvd.Compression.none

          ????#?Horovod:?wrap?optimizer?with?DistributedOptimizer.
          ????optimizer?=?hvd.DistributedOptimizer(optimizer,
          ?????????????????????????????????????????named_parameters=model.named_parameters(),
          ?????????????????????????????????????????compression=compression,
          ?????????????????????????????????????????op=hvd.Adasum?if?args.use_adasum?else?hvd.Average,
          ?????????????????????????????????????????gradient_predivide_factor=args.gradient_predivide_factor)

          ????for?epoch?in?range(1,?args.epochs?+?1):
          ????????train(epoch)
          ????????test()

          訓(xùn)練命令

          開始訓(xùn)練,指定worker個(gè)數(shù):

          #?run?training?with?4?GPUs?on?a?single?machine
          $?horovodrun?-np?4?python?train.py

          #?run?training?with?8?GPUs?on?two?machines?(4?GPUs?each)
          $?horovodrun?-np?8?-H?hostname1:4,hostname2:4?python?train.py

          參考

          https://github.com/horovod/horovod





          歡迎添加筆者微信加群討論


          瀏覽 51
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  a黄网站| 最新国产亚洲免费在线视频 | 操逼黄色电影 | 一区二区三区精品久久 | 成人在线免费观看三级片 |