Java8 Stream:2萬(wàn)字20個(gè)實(shí)例,玩轉(zhuǎn)集合的篩選、歸約、分組、聚合
往期熱門文章:
1、留在一線,逃離一線?我從上海舉家回成都的生活經(jīng)歷告訴你
2、公司規(guī)定所有接口都用 POST請(qǐng)求,這是為什么?
3、我被這個(gè)瀏覽了 746000 次的問(wèn)題驚住了!
5、自從用完Gradle后,有點(diǎn)嫌棄Maven了!速度賊快!
來(lái)源:
https://blog.csdn.net/mu_wind/article/details/109516995

從員工集合中篩選出 salary 大于 8000 的員工,并放置到新的集合里。 統(tǒng)計(jì)員工的最高薪資、平均薪資、薪資之和。 將員工按薪資從高到低排序,同樣薪資者年齡小者在前。 將員工按性別分類,將員工按性別和地區(qū)分類,將員工按薪資是否高于 8000 分為兩部分。
1. Stream 概述
Stream,配合同版本出現(xiàn)的 Lambda ,給我們操作集合(Collection)提供了極大的便利。Stream?Stream將要處理的元素集合看作一種流,在流的過(guò)程中,借助Stream API對(duì)流中的元素進(jìn)行操作,比如:篩選、排序、聚合等。
Stream可以由數(shù)組或集合創(chuàng)建,對(duì)流的操作分為兩種:中間操作,每次返回一個(gè)新的流,可以有多個(gè)。 終端操作,每個(gè)流只能進(jìn)行一次終端操作,終端操作結(jié)束后流無(wú)法再次使用。終端操作會(huì)產(chǎn)生一個(gè)新的集合或值。
Stream有幾個(gè)特性:stream 不存儲(chǔ)數(shù)據(jù),而是按照特定的規(guī)則對(duì)數(shù)據(jù)進(jìn)行計(jì)算,一般會(huì)輸出結(jié)果。 stream 不會(huì)改變數(shù)據(jù)源,通常情況下會(huì)產(chǎn)生一個(gè)新的集合或一個(gè)值。 stream 具有延遲執(zhí)行特性,只有調(diào)用終端操作時(shí),中間操作才會(huì)執(zhí)行。
2. Stream 的創(chuàng)建
Stream可以通過(guò)集合數(shù)組創(chuàng)建。java.util.Collection.stream() 方法用集合創(chuàng)建流List ?list?=?Arrays.asList("a",?"b",?"c");
//?創(chuàng)建一個(gè)順序流
Stream?stream?=?list.stream();
//?創(chuàng)建一個(gè)并行流
Stream?parallelStream?=?list.parallelStream();
java.util.Arrays.stream(T[] array)方法用數(shù)組創(chuàng)建流int[]?array={1,3,5,6,8};
IntStream?stream?=?Arrays.stream(array);
Stream的靜態(tài)方法:of()、iterate()、generate()Stream ?stream?=?Stream.of(1,?2,?3,?4,?5,?6);
Stream?stream2?=?Stream.iterate(0,?(x)?->?x?+?3).limit(4);
stream2.forEach(System.out::println);
Stream?stream3?=?Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);
0 3 6 90.67961569092719940.19143142088542830.8116932592396652
stream和parallelStream的簡(jiǎn)單區(qū)分: stream是順序流,由主線程按順序?qū)α鲌?zhí)行操作,而parallelStream是并行流,內(nèi)部以多線程并行執(zhí)行的方式對(duì)流進(jìn)行操作,但前提是流中的數(shù)據(jù)處理沒(méi)有順序要求。例如篩選集合中的奇數(shù),兩者的處理不同之處:
parallel()把順序流轉(zhuǎn)換成并行流:Optional ?findFirst?=?list.stream().parallel().filter(x->x>6).findFirst();
3. Stream 的使用
Optional 。Optional類是一個(gè)可以為null的容器對(duì)象。如果值存在則isPresent()方法會(huì)返回true,調(diào)用get()方法會(huì)返回該對(duì)象。更詳細(xì)說(shuō)明請(qǐng)見(jiàn):Java 8 Optional 類詳解(http://itsoku.com/article/200)

3.1. 案例使用的員工類
List ?personList?=?new?ArrayList ();
personList.add(new?Person("Tom",?8900,?"male",?"New?York"));
personList.add(new?Person("Jack",?7000,?"male",?"Washington"));
personList.add(new?Person("Lily",?7800,?"female",?"Washington"));
personList.add(new?Person("Anni",?8200,?"female",?"New?York"));
personList.add(new?Person("Owen",?9500,?"male",?"New?York"));
personList.add(new?Person("Alisa",?7900,?"female",?"New?York"));
class?Person?{
????private?String?name;??//?姓名
????private?int?salary;?//?薪資
????private?int?age;?//?年齡
????private?String?sex;?//性別
????private?String?area;??//?地區(qū)
????//?構(gòu)造方法
????public?Person(String?name,?int?salary,?int?age,String?sex,String?area)?{
????????this.name?=?name;
????????this.salary?=?salary;
????????this.age?=?age;
????????this.sex?=?sex;
????????this.area?=?area;
????}
????//?省略了get和set,請(qǐng)自行添加
}
3.2. 遍歷/匹配(foreach/find/match)
Stream也是支持類似集合的遍歷和匹配元素的,只是Stream中的元素是以Optional類型存在的。Stream的遍歷、匹配非常簡(jiǎn)單。
//?import已省略,請(qǐng)自行添加,后面代碼亦是
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList(7,?6,?9,?3,?8,?2,?1);
????????//?遍歷輸出符合條件的元素
????????list.stream().filter(x?->?x?>?6).forEach(System.out::println);
????????//?匹配第一個(gè)
????????Optional?findFirst?=?list.stream().filter(x?->?x?>?6).findFirst();
????????//?匹配任意(適用于并行流)
????????Optional?findAny?=?list.parallelStream().filter(x?->?x?>?6).findAny();
????????//?是否包含符合特定條件的元素
????????boolean?anyMatch?=?list.stream().anyMatch(x?->?x?>?6);
????????System.out.println("匹配第一個(gè)值:"?+?findFirst.get());
????????System.out.println("匹配任意一個(gè)值:"?+?findAny.get());
????????System.out.println("是否存在大于6的值:"?+?anyMatch);
????}
}
3.3. 篩選(filter)

Integer集合中大于 7 的元素,并打印出來(lái)public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList(6,?7,?3,?8,?1,?2,?9);
????????Stream?stream?=?list.stream();
????????stream.filter(x?->?x?>?7).forEach(System.out::println);
????}
}
8 9
collect(收集),后文有詳細(xì)介紹。public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????personList.add(new?Person("Anni",?8200,?24,?"female",?"New?York"));
????????personList.add(new?Person("Owen",?9500,?25,?"male",?"New?York"));
????????personList.add(new?Person("Alisa",?7900,?26,?"female",?"New?York"));
????????List?fiterList?=?personList.stream().filter(x?->?x.getSalary()?>?8000).map(Person::getName)
????????????.collect(Collectors.toList());
????????System.out.print("高于8000的員工姓名:"?+?fiterList);
????}
}
高于 8000 的員工姓名:[Tom, Anni, Owen]
3.4. 聚合(max/min/count)
max、min、count這些字眼你一定不陌生,沒(méi)錯(cuò),在 mysql 中我們常用它們進(jìn)行數(shù)據(jù)統(tǒng)計(jì)。Java stream 中也引入了這些概念和用法,極大地方便了我們對(duì)集合、數(shù)組的數(shù)據(jù)統(tǒng)計(jì)工作。
String集合中最長(zhǎng)的元素。public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList("adnm",?"admmt",?"pot",?"xbangd",?"weoujgsd");
????????Optional?max?=?list.stream().max(Comparator.comparing(String::length));
????????System.out.println("最長(zhǎng)的字符串:"?+?max.get());
????}
}
最長(zhǎng)的字符串:weoujgsd
Integer集合中的最大值。public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList(7,?6,?9,?4,?11,?6);
????????//?自然排序
????????Optional?max?=?list.stream().max(Integer::compareTo);
????????//?自定義排序
????????Optional?max2?=?list.stream().max(new?Comparator ()?{
????????????@Override
????????????public?int?compare(Integer?o1,?Integer?o2)?{
????????????????return?o1.compareTo(o2);
????????????}
????????});
????????System.out.println("自然排序的最大值:"?+?max.get());
????????System.out.println("自定義排序的最大值:"?+?max2.get());
????}
}
自然排序的最大值:11 自定義排序的最大值:11
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????personList.add(new?Person("Anni",?8200,?24,?"female",?"New?York"));
????????personList.add(new?Person("Owen",?9500,?25,?"male",?"New?York"));
????????personList.add(new?Person("Alisa",?7900,?26,?"female",?"New?York"));
????????Optional?max?=?personList.stream().max(Comparator.comparingInt(Person::getSalary));
????????System.out.println("員工工資最大值:"?+?max.get().getSalary());
????}
}
員工工資最大值:9500
Integer集合中大于 6 的元素的個(gè)數(shù)。import?java.util.Arrays;
import?java.util.List;
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList(7,?6,?4,?8,?2,?11,?9);
????????long?count?=?list.stream().filter(x?->?x?>?6).count();
????????System.out.println("list中大于6的元素個(gè)數(shù):"?+?count);
????}
}
list 中大于 6 的元素個(gè)數(shù):4
3.5. 映射(map/flatMap)
map和flatMap:map:接收一個(gè)函數(shù)作為參數(shù),該函數(shù)會(huì)被應(yīng)用到每個(gè)元素上,并將其映射成一個(gè)新的元素。flatMap:接收一個(gè)函數(shù)作為參數(shù),將流中的每個(gè)值都換成另一個(gè)流,然后把所有流連接成一個(gè)流。


public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????String[]?strArr?=?{?"abcd",?"bcdd",?"defde",?"fTr"?};
????????List?strList?=?Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());
????????List?intList?=?Arrays.asList(1,?3,?5,?7,?9,?11);
????????List?intListNew?=?intList.stream().map(x?->?x?+?3).collect(Collectors.toList());
????????System.out.println("每個(gè)元素大寫(xiě):"?+?strList);
????????System.out.println("每個(gè)元素+3:"?+?intListNew);
????}
}
每個(gè)元素大寫(xiě):[ABCD, BCDD, DEFDE, FTR]? 每個(gè)元素+3:[4, 6, 8, 10, 12, 14]
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????personList.add(new?Person("Anni",?8200,?24,?"female",?"New?York"));
????????personList.add(new?Person("Owen",?9500,?25,?"male",?"New?York"));
????????personList.add(new?Person("Alisa",?7900,?26,?"female",?"New?York"));
????????//?不改變?cè)瓉?lái)員工集合的方式
????????List?personListNew?=?personList.stream().map(person?->?{
????????????Person?personNew?=?new?Person(person.getName(),?0,?0,?null,?null);
????????????personNew.setSalary(person.getSalary()?+?10000);
????????????return?personNew;
????????}).collect(Collectors.toList());
????????System.out.println("一次改動(dòng)前:"?+?personList.get(0).getName()?+?"-->"?+?personList.get(0).getSalary());
????????System.out.println("一次改動(dòng)后:"?+?personListNew.get(0).getName()?+?"-->"?+?personListNew.get(0).getSalary());
????????//?改變?cè)瓉?lái)員工集合的方式
????????List?personListNew2?=?personList.stream().map(person?->?{
????????????person.setSalary(person.getSalary()?+?10000);
????????????return?person;
????????}).collect(Collectors.toList());
????????System.out.println("二次改動(dòng)前:"?+?personList.get(0).getName()?+?"-->"?+?personListNew.get(0).getSalary());
????????System.out.println("二次改動(dòng)后:"?+?personListNew2.get(0).getName()?+?"-->"?+?personListNew.get(0).getSalary());
????}
}
一次改動(dòng)前:Tom–>8900? 一次改動(dòng)后:Tom–>18900? 二次改動(dòng)前:Tom–>18900? 二次改動(dòng)后:Tom–>18900
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList("m,k,l,a",?"1,3,5,7");
????????List?listNew?=?list.stream().flatMap(s?->?{
????????????//?將每個(gè)元素轉(zhuǎn)換成一個(gè)stream
????????????String[]?split?=?s.split(",");
????????????Stream?s2?=?Arrays.stream(split);
????????????return?s2;
????????}).collect(Collectors.toList());
????????System.out.println("處理前的集合:"?+?list);
????????System.out.println("處理后的集合:"?+?listNew);
????}
}
處理前的集合:[m-k-l-a, 1-3-5]? 處理后的集合:[m, k, l, a, 1, 3, 5]
3.6. 歸約(reduce)

Integer集合的元素之和、乘積和最大值。public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList(1,?3,?2,?8,?11,?4);
????????//?求和方式1
????????Optional?sum?=?list.stream().reduce((x,?y)?->?x?+?y);
????????//?求和方式2
????????Optional?sum2?=?list.stream().reduce(Integer::sum);
????????//?求和方式3
????????Integer?sum3?=?list.stream().reduce(0,?Integer::sum);
????????//?求乘積
????????Optional?product?=?list.stream().reduce((x,?y)?->?x?*?y);
????????//?求最大值方式1
????????Optional?max?=?list.stream().reduce((x,?y)?->?x?>?y???x?:?y);
????????//?求最大值寫(xiě)法2
????????Integer?max2?=?list.stream().reduce(1,?Integer::max);
????????System.out.println("list求和:"?+?sum.get()?+?","?+?sum2.get()?+?","?+?sum3);
????????System.out.println("list求積:"?+?product.get());
????????System.out.println("list求和:"?+?max.get()?+?","?+?max2);
????}
}
list 求和:29,29,29 list?求積:2112list 求和:11,11
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????personList.add(new?Person("Anni",?8200,?24,?"female",?"New?York"));
????????personList.add(new?Person("Owen",?9500,?25,?"male",?"New?York"));
????????personList.add(new?Person("Alisa",?7900,?26,?"female",?"New?York"));
????????//?求工資之和方式1:
????????Optional?sumSalary?=?personList.stream().map(Person::getSalary).reduce(Integer::sum);
????????//?求工資之和方式2:
????????Integer?sumSalary2?=?personList.stream().reduce(0,?(sum,?p)?->?sum?+=?p.getSalary(),
????????????????????????????????????????????????????????(sum1,?sum2)?->?sum1?+?sum2);
????????//?求工資之和方式3:
????????Integer?sumSalary3?=?personList.stream().reduce(0,?(sum,?p)?->?sum?+=?p.getSalary(),?Integer::sum);
????????//?求最高工資方式1:
????????Integer?maxSalary?=?personList.stream().reduce(0,?(max,?p)?->?max?>?p.getSalary()???max?:?p.getSalary(),
???????????????????????????????????????????????????????Integer::max);
????????//?求最高工資方式2:
????????Integer?maxSalary2?=?personList.stream().reduce(0,?(max,?p)?->?max?>?p.getSalary()???max?:?p.getSalary(),
????????????????????????????????????????????????????????(max1,?max2)?->?max1?>?max2???max1?:?max2);
????????System.out.println("工資之和:"?+?sumSalary.get()?+?","?+?sumSalary2?+?","?+?sumSalary3);
????????System.out.println("最高工資:"?+?maxSalary?+?","?+?maxSalary2);
????}
}
工資之和:49300,49300,49300? 最高工資:9500,9500
3.7. 收集(collect)
collect,收集,可以說(shuō)是內(nèi)容最繁多、功能最豐富的部分了。從字面上去理解,就是把一個(gè)流收集起來(lái),最終可以是收集成一個(gè)值也可以收集成一個(gè)新的集合。collect主要依賴java.util.stream.Collectors類內(nèi)置的靜態(tài)方法。
3.7.1 歸集(toList/toSet/toMap)
toList、toSet和toMap比較常用,另外還有toCollection、toConcurrentMap等復(fù)雜一些的用法。toList、toSet和toMap:public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?list?=?Arrays.asList(1,?6,?3,?4,?6,?7,?9,?6,?20);
????????List?listNew?=?list.stream().filter(x?->?x?%?2?==?0).collect(Collectors.toList());
????????Set?set?=?list.stream().filter(x?->?x?%?2?==?0).collect(Collectors.toSet());
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????personList.add(new?Person("Anni",?8200,?24,?"female",?"New?York"));
????????Map,?Person>?map?=?personList.stream().filter(p?->?p.getSalary()?>?8000)
????????????.collect(Collectors.toMap(Person::getName,?p?->?p));
????????System.out.println("toList:"?+?listNew);
????????System.out.println("toSet:"?+?set);
????????System.out.println("toMap:"?+?map);
????}
}
toList:[6, 4, 6, 6, 20]? toSet:[4, 20, 6]? toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}
3.7.2 統(tǒng)計(jì)(count/averaging)
Collectors提供了一系列用于數(shù)據(jù)統(tǒng)計(jì)的靜態(tài)方法:計(jì)數(shù): count平均值: averagingInt、averagingLong、averagingDouble最值: maxBy、minBy求和: summingInt、summingLong、summingDouble統(tǒng)計(jì)以上所有: summarizingInt、summarizingLong、summarizingDouble
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????//?求總數(shù)
????????Long?count?=?personList.stream().collect(Collectors.counting());
????????//?求平均工資
????????Double?average?=?personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
????????//?求最高工資
????????Optional?max?=?personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
????????//?求工資之和
????????Integer?sum?=?personList.stream().collect(Collectors.summingInt(Person::getSalary));
????????//?一次性統(tǒng)計(jì)所有信息
????????DoubleSummaryStatistics?collect?=?personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
????????System.out.println("員工總數(shù):"?+?count);
????????System.out.println("員工平均工資:"?+?average);
????????System.out.println("員工工資總和:"?+?sum);
????????System.out.println("員工工資所有統(tǒng)計(jì):"?+?collect);
????}
}
員工總數(shù):3 員工平均工資:7900.0? 員工工資總和:23700? 員工工資所有統(tǒng)計(jì):DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}
3.7.3 分組(partitioningBy/groupingBy)
分區(qū):將 stream按條件分為兩個(gè)Map,比如員工按薪資是否高于 8000 分為兩部分。分組:將集合分為多個(gè) Map,比如員工按性別分組。有單級(jí)分組和多級(jí)分組。

public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?"female",?"Washington"));
????????personList.add(new?Person("Anni",?8200,?"female",?"New?York"));
????????personList.add(new?Person("Owen",?9500,?"male",?"New?York"));
????????personList.add(new?Person("Alisa",?7900,?"female",?"New?York"));
????????//?將員工按薪資是否高于8000分組
????????Map>?part?=?personList.stream().collect(Collectors.partitioningBy(x?->?x.getSalary()?>?8000));
????????//?將員工按性別分組
????????Map>?group?=?personList.stream().collect(Collectors.groupingBy(Person::getSex));
????????//?將員工先按性別分組,再按地區(qū)分組
????????Map>>?group2?=?personList.stream().collect(Collectors.groupingBy(Person::getSex,?Collectors.groupingBy(Person::getArea)));
????????System.out.println("員工按薪資是否大于8000分組情況:"?+?part);
????????System.out.println("員工按性別分組情況:"?+?group);
????????System.out.println("員工按性別、地區(qū):"?+?group2);
????}
}
員工按薪資是否大于8000分組情況:{false=[mutest.Person@2d98a335,?mutest.Person@16b98e56,?mutest.Person@7ef20235],?true=[mutest.Person@27d6c5e0,?mutest.Person@4f3f5b24,?mutest.Person@15aeb7ab]}
員工按性別分組情況:{female=[mutest.Person@16b98e56,?mutest.Person@4f3f5b24,?mutest.Person@7ef20235],?male=[mutest.Person@27d6c5e0,?mutest.Person@2d98a335,?mutest.Person@15aeb7ab]}
員工按性別、地區(qū):{female={New York=[mutest.Person@4f3f5b24,?mutest.Person@7ef20235],?Washington=[mutest.Person@16b98e56]},?male={New?York=[mutest.Person@27d6c5e0,?mutest.Person@15aeb7ab],?Washington=[mutest.Person@2d98a335]}}
3.7.4 接合(joining)
joining可以將 stream 中的元素用特定的連接符(沒(méi)有的話,則直接連接)連接成一個(gè)字符串。public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????String?names?=?personList.stream().map(p?->?p.getName()).collect(Collectors.joining(","));
????????System.out.println("所有員工的姓名:"?+?names);
????????List?list?=?Arrays.asList("A",?"B",?"C");
????????String?string?=?list.stream().collect(Collectors.joining("-"));
????????System.out.println("拼接后的字符串:"?+?string);
????}
}
所有員工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C
3.7.5 歸約(reducing)
Collectors類提供的reducing方法,相比于stream本身的reduce方法,增加了對(duì)自定義歸約的支持。public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Tom",?8900,?23,?"male",?"New?York"));
????????personList.add(new?Person("Jack",?7000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?7800,?21,?"female",?"Washington"));
????????//?每個(gè)員工減去起征點(diǎn)后的薪資之和(這個(gè)例子并不嚴(yán)謹(jǐn),但一時(shí)沒(méi)想到好的例子)
????????Integer?sum?=?personList.stream().collect(Collectors.reducing(0,?Person::getSalary,?(i,?j)?->?(i?+?j?-?5000)));
????????System.out.println("員工扣稅薪資總和:"?+?sum);
????????//?stream的reduce
????????Optional?sum2?=?personList.stream().map(Person::getSalary).reduce(Integer::sum);
????????System.out.println("員工薪資總和:"?+?sum2.get());
????}
}
員工扣稅薪資總和:8700? 員工薪資總和:23700
3.8. 排序(sorted)
sorted():自然排序,流中元素需實(shí)現(xiàn) Comparable 接口 sorted(Comparator com):Comparator 排序器自定義排序
public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????List?personList?=?new?ArrayList ();
????????personList.add(new?Person("Sherry",?9000,?24,?"female",?"New?York"));
????????personList.add(new?Person("Tom",?8900,?22,?"male",?"Washington"));
????????personList.add(new?Person("Jack",?9000,?25,?"male",?"Washington"));
????????personList.add(new?Person("Lily",?8800,?26,?"male",?"New?York"));
????????personList.add(new?Person("Alisa",?9000,?26,?"female",?"New?York"));
????????//?按工資升序排序(自然排序)
????????List?newList?=?personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
????????????.collect(Collectors.toList());
????????//?按工資倒序排序
????????List?newList2?=?personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
????????????.map(Person::getName).collect(Collectors.toList());
????????//?先按工資再按年齡升序排序
????????List?newList3?=?personList.stream()
????????????.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
????????????.collect(Collectors.toList());
????????//?先按工資再按年齡自定義排序(降序)
????????List?newList4?=?personList.stream().sorted((p1,?p2)?->?{
????????????if?(p1.getSalary()?==?p2.getSalary())?{
????????????????return?p2.getAge()?-?p1.getAge();
????????????}?else?{
????????????????return?p2.getSalary()?-?p1.getSalary();
????????????}
????????}).map(Person::getName).collect(Collectors.toList());
????????System.out.println("按工資升序排序:"?+?newList);
????????System.out.println("按工資降序排序:"?+?newList2);
????????System.out.println("先按工資再按年齡升序排序:"?+?newList3);
????????System.out.println("先按工資再按年齡自定義降序排序:"?+?newList4);
????}
}
按工資升序排序:[Lily, Tom, Sherry, Jack, Alisa]? 按工資降序排序:[Sherry, Jack, Alisa, Tom, Lily]? 先按工資再按年齡升序排序:[Lily, Tom, Sherry, Jack, Alisa]? 先按工資再按年齡自定義降序排序:[Alisa, Jack, Sherry, Tom, Lily]
3.9. 提取/組合



public?class?StreamTest?{
????public?static?void?main(String[]?args)?{
????????String[]?arr1?=?{?"a",?"b",?"c",?"d"?};
????????String[]?arr2?=?{?"d",?"e",?"f",?"g"?};
????????Stream?stream1?=?Stream.of(arr1);
????????Stream?stream2?=?Stream.of(arr2);
????????// concat:合并兩個(gè)流 distinct:去重
????????List?newList?=?Stream.concat(stream1,?stream2).distinct().collect(Collectors.toList());
????????// limit:限制從流中獲得前n個(gè)數(shù)據(jù)
????????List?collect?=?Stream.iterate(1,?x?->?x?+?2).limit(10).collect(Collectors.toList());
????????// skip:跳過(guò)前n個(gè)數(shù)據(jù)
????????List?collect2?=?Stream.iterate(1,?x?->?x?+?2).skip(1).limit(5).collect(Collectors.toList());
????????System.out.println("流合并:"?+?newList);
????????System.out.println("limit:"?+?collect);
????????System.out.println("skip:"?+?collect2);
????}
}
流合并:[a, b, c, d, e, f, g]? limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]? skip:[3, 5, 7, 9, 11]
往期熱門文章:
1、《歷史文章分類導(dǎo)讀列表!精選優(yōu)秀博文都在這里了!》 2、為什么國(guó)內(nèi) 996 干不過(guò)國(guó)外的 955 呢? 3、在部隊(duì)當(dāng)程序員是什么體驗(yàn)? 4、神級(jí)程序員都在用什么工具? 5、是時(shí)候扔掉 Postman 了,Apifox 真香! 6、這些年我用過(guò)的 6個(gè)API 接口文檔平臺(tái),真的好用 7、Redis 實(shí)現(xiàn)限流的三種簡(jiǎn)單方式 8、9個(gè)GVP國(guó)產(chǎn)Java開(kāi)源項(xiàng)目!是真滴哇塞 9、阿里領(lǐng)導(dǎo):手下兩個(gè)應(yīng)屆生,一個(gè)踏實(shí)喜歡加班,一個(gè)技術(shù)強(qiáng)挑活,怎么選? 10、這就是最適合程序員的云筆記?
評(píng)論
圖片
表情
