<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          KDD2021| 工業(yè)界搜推廣nlp論文整理

          共 10960字,需瀏覽 22分鐘

           ·

          2021-08-19 16:51

          本文整理了KDD21的Accepted Papers[1]中,工業(yè)界在搜索、推薦、廣告、nlp上的文章。整理的論文列表比較偏個(gè)人口味,選取的方式是根據(jù)論文作者列表上看是否是公司主導(dǎo)的,但判斷比較偏主觀,存在漏掉的可能。整理的方式主要按照公司和方向來(lái)劃分,排名不計(jì)先后順序。

          1. 按照方向分類

          主要挑選了一些筆者比較感興趣的方向,并整理了對(duì)應(yīng)的文章名稱。讀者可以大致讀一下文章名,判斷是否和自己的研究方向或工作方向一致,從中選擇感興趣的文章進(jìn)行精讀。

          1.1 推薦系統(tǒng)

          1.1.1 樣本

          涉及到采樣、負(fù)樣本等。

          • Google: Bootstrapping for Batch Active Sampling

          • Google: Bootstrapping Recommendations at Chrome Web Store

          • Alibaba:Real Negatives Matter: Continuous Training with Real Negatives for Delayed Feedback Modeling

          1.1.2 表征學(xué)習(xí)

          • Google: Learning to Embed Categorical Features without Embedding Tables for Recommendation

          • 華為:An Embedding Learning Framework for Numerical Features in CTR Prediction

          • 騰訊:Learning Reliable User Representations from Volatile and Sparse Data to Accurately Predict Customer Lifetime Value

          • 阿里:Representation Learning for Predicting Customer Orders

          1.1.3 跨域推薦

          • 阿里:Debiasing Learning based Cross-domain Recommendation

          • 騰訊:Adversarial Feature Translation for Multi-domain Recommendation

          1.1.4 糾偏

          • 阿里:Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems

          • 阿里:Debiasing Learning based Cross-domain Recommendation

          1.1.5 圖神經(jīng)網(wǎng)絡(luò)

          • 華為:Dual Graph enhanced Embedding Neural Network for CTR Prediction

          • 美團(tuán):Signed Graph Neural Network with Latent Groups

          • 阿里:DMBGN: Deep Multi-Behavior Graph Networks for Voucher Redemption Rate Prediction

          • 百度:MugRep: A Multi-Task Hierarchical Graph Representation Learning Framework for Real Estate Appraisal

          1.1.6 多任務(wù)學(xué)習(xí)

          • Google:Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning

          • 美團(tuán):Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning for Customer Acquisition

          • 百度:MugRep: A Multi-Task Hierarchical Graph Representation Learning Framework for Real Estate Appraisal

          1.1.7 多模態(tài)/短視頻推薦

          • 阿里:SEMI: A Sequential Multi-Modal Information Transfer Network for E-Commerce Micro-Video Recommendations

          1.1.8 知識(shí)圖譜

          • Microsoft:Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning

          1.1.9 推薦系統(tǒng)架構(gòu)

          • Facebook:Training Recommender Systems at Scale: Communication-Efficient Model and Data Parallelism

          • Facebook:Hierarchical Training: Scaling Deep Recommendation Models on Large CPU Clusters

          • 阿里,F(xiàn)leetRec: Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clusters

          • 騰訊,Large-Scale Network Embedding in Apache Spark

          • Microsoft,On Post-Selection Inference in A/B Testing

          1.2 搜索

          1.2.1 向量檢索

          • 阿里:Embedding-based Product Retrieval in Taobao Search

          1.2.2 查詢/內(nèi)容理解

          • Facebook:Que2Search: Fast and Accurate Query and Document Understanding for Search at Facebook

          1.2.3 概念圖譜

          • 阿里巴巴:AliCG: Fine-grained and Evolvable Conceptual Graph Construction for Semantic Search at Alibaba

          • 阿里巴巴:AliCoCo2: Commonsense Knowledge Extraction, Representation and Application in E-commerce

          1.2.4 預(yù)訓(xùn)練

          • 百度:Pretrained Language Models for Web-scale Retrieval in Baidu Search

          • 微軟:Domain-Specific Pretraining for Vertical Search: Case Study on Biomedical Literature

          1.2.5 Query改寫/自動(dòng)補(bǔ)全

          • 微軟:Diversity driven Query Rewriting in Search Advertising

          • 百度:Meta-Learned Spatial-Temporal POI Auto-Completion for the Search Engine at Baidu Maps

          1.2.6 圖神經(jīng)網(wǎng)絡(luò)

          • 百度:HGAMN: Heterogeneous Graph Attention Matching Network for Multilingual POI Retrieval at Baidu Maps

          1.2.7 多模態(tài)

          • Google: Mondegreen: A Post-Processing Solution to Speech Recognition Error Correction for Voice Search Queries

          • Facebook:VisRel: Media Search at Scale

          1.2.8 邊緣計(jì)算

          • 阿里:FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data

          1.2.9 搜索引擎架構(gòu)

          • 百度:Norm Adjusted Proximity Graph for Fast Inner Product Retrieval

          • 百度:JIZHI: A Fast and Cost-Effective Model-As-A-Service System for Web-Scale Online Inference at Baidu

          1.3 廣告

          這一塊文章不是很多,就不細(xì)分了。

          • Google: Clustering for Private Interest-based Advertising

          • 阿里:A Unified Solution to Constrained Bidding in Online Display Advertising

          • 阿里:Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning

          • 阿里:Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce Advertising

          • 阿里:We Know What You Want: An Advertising Strategy Recommender System for Online Advertising

          1.4 NLP

          1.4.1 預(yù)訓(xùn)練

          • 微軟:NAS-BERT: Task-Agnostic and Adaptive-Size BERT Compression with Neural Architecture Search

          • 阿里:M6: Multi-Modality-to-Multi-Modality Multitask Mega-transformer for Unified Pretraining

          • 微軟:TUTA: Tree-based Transformers for Generally Structured Table Pre-training

          1.4.2 命名實(shí)體識(shí)別

          • 微軟:Reinforced Iterative Knowledge Distillation for Cross-Lingual Named Entity Recognition

          1.4.3 少樣本學(xué)習(xí)

          • 微軟:Generalized Zero-Shot Extreme Multi-label Learning

          • 微軟:Zero-shot Multi-lingual Interrogative Question Generation for "People Also Ask" at Bing

          1.4.4 摘要

          • 微軟:Reinforcing Pretrained Models for Generating Attractive Text Advertisements

          1.4.5 意圖識(shí)別

          • 阿里:MeLL: Large-scale Extensible User Intent Classification for Dialogue Systems with Meta Lifelong Learning

          1.4.6 多模態(tài)

          • 阿里:M6: Multi-Modality-to-Multi-Modality Multitask Mega-transformer for Unified Pretraining

          2.按照公司分類

          2.1 Google

          • Learning to Embed Categorical Features without Embedding Tables for Recommendation

          • NewsEmbed: Modeling News through Pre-trained Document Representations

          • Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning

          • Bootstrapping for Batch Active Sampling

          • Bootstrapping Recommendations at Chrome Web Store

          • Clustering for Private Interest-based Advertising

          • Dynamic Language Models for Continuously Evolving Content

          • Mondegreen: A Post-Processing Solution to Speech Recognition Error Correction for Voice Search Queries

          • On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition

          2.2 Facebook

          • Training Recommender Systems at Scale: Communication-Efficient Model and Data Parallelism
          • Preference Amplification in Recommender Systems
          • Hierarchical Training: Scaling Deep Recommendation Models on Large CPU Clusters
          • Network Experimentation at Scale
          • Que2Search: Fast and Accurate Query and Document Understanding for Search at Facebook
          • VisRel: Media Search at Scale
          • Balancing Consistency and Disparity in Network Alignment

          2.3 Microsoft

          • Generalized Zero-Shot Extreme Multi-label Learning

          • Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

          • NAS-BERT: Task-Agnostic and Adaptive-Size BERT Compression with Neural Architecture Search

          • Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning

          • Table2Charts: Recommending Charts by Learning Shared Table Representations

          • TabularNet: A Neural Network Architecture for Understanding Semantic Structures of Tabular Data

          • TUTA: Tree-based Transformers for Generally Structured Table Pre-training

          • Contextual Bandit Applications in a Customer Support Bot

          • Diversity driven Query Rewriting in Search Advertising

          • Domain-Specific Pretraining for Vertical Search: Case Study on Biomedical Literature

          • On Post-Selection Inference in A/B Testing

          • Reinforced Iterative Knowledge Distillation for Cross-Lingual Named Entity Recognition

          • Reinforcing Pretrained Models for Generating Attractive Text Advertisements

          • Zero-shot Multi-lingual Interrogative Question Generation for "People Also Ask" at Bing

          2.4 阿里

          • A Unified Solution to Constrained Bidding in Online Display Advertising
          • AliCG: Fine-grained and Evolvable Conceptual Graph Construction for Semantic Search at Alibaba
          • AliCoCo2: Commonsense Knowledge Extraction, Representation and Application in E-commerce
          • Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems
          • Debiasing Learning based Cross-domain Recommendation
          • Device-Cloud Collaborative Learning for Recommendation
          • Deep Inclusion Relation-aware Network for User Response Prediction at Fliggy
          • DMBGN: Deep Multi-Behavior Graph Networks for Voucher Redemption Rate Prediction
          • Dual Attentive Sequential Learning for Cross-Domain Click-Through Rate Prediction
          • Embedding-based Product Retrieval in Taobao Search
          • Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
          • FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data
          • FleetRec: Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clusters
          • Intention-aware Heterogeneous Graph Attention Networks for Fraud Transactions Detection
          • Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network Approach
          • M6: Multi-Modality-to-Multi-Modality Multitask Mega-transformer for Unified Pretraining
          • Markdowns in E-Commerce Fresh Retail: A Counterfactual Prediction and Multi-Period Optimization Approach
          • MeLL: Large-scale Extensible User Intent Classification for Dialogue Systems with Meta Lifelong Learning
          • Multi-Agent Cooperative Bidding Games for Multi-Objective Optimization in e-Commercial Sponsored Search
          • Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce Advertising
          • Real Negatives Matter: Continuous Training with Real Negatives for Delayed Feedback Modeling
          • Representation Learning for Predicting Customer Orders
          • SEMI: A Sequential Multi-Modal Information Transfer Network for E-Commerce Micro-Video Recommendations
          • We Know What You Want: An Advertising Strategy Recommender System for Online Advertising

          2.5 百度

          • Norm Adjusted Proximity Graph for Fast Inner Product Retrieval
          • Curriculum Meta-Learning for Next POI Recommendation
          • Pretrained Language Models for Web-scale Retrieval in Baidu Search
          • HGAMN: Heterogeneous Graph Attention Matching Network for Multilingual POI Retrieval at Baidu Maps
          • JIZHI: A Fast and Cost-Effective Model-As-A-Service System for Web-Scale Online Inference at Baidu
          • Meta-Learned Spatial-Temporal POI Auto-Completion for the Search Engine at Baidu Maps
          • MugRep: A Multi-Task Hierarchical Graph Representation Learning Framework for Real Estate Appraisal
          • SSML: Self-Supervised Meta-Learner for En Route Travel Time Estimation at Baidu Maps
          • Talent Demand Forecasting with Attentive Neural Sequential Model

          2.6 騰訊

          • Why Attentions May Not Be Interpretable?
          • Adversarial Feature Translation for Multi-domain Recommendation
          • Large-Scale Network Embedding in Apache Spark
          • Learn to Expand Audience via Meta Hybrid Experts and Critics
          • Learning Reliable User Representations from Volatile and Sparse Data to Accurately Predict Customer Lifetime Value

          2.7 美團(tuán)

          • Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning for Customer Acquisition
          • User Consumption Intention Prediction in Meituan
          • Signed Graph Neural Network with Latent Groups
          • A Deep Learning Method for Route and Time Prediction in Food Delivery Service

          2.8 華為

          • An Embedding Learning Framework for Numerical Features in CTR Prediction
          • Dual Graph enhanced Embedding Neural Network for CTR Prediction
          • Discrete-time Temporal Network Embedding via Implicit Hierarchical Learning
          • Retrieval & Interaction Machine for Tabular Data Prediction
          • A Multi-Graph Attributed Reinforcement Learning Based Optimization Algorithm for Large-scale Hybrid Flow Shop Scheduling Problem

          結(jié)語(yǔ)

          后續(xù)筆者會(huì)針對(duì)感興趣的文章進(jìn)行解讀。如果大家有感興趣的文章,也歡迎在公眾號(hào)后臺(tái)跟我留言,我會(huì)優(yōu)先挑選大家感興趣的文章進(jìn)行解讀。當(dāng)然,如果你有解讀好的筆記,也歡迎投稿或交流~~

          參考

          [1] KDD2021 Accepted Papers: https://kdd.org/kdd2021/accepted-papers/index

          [2] KDD2021 | 推薦系統(tǒng)論文集錦


          喜歡的話點(diǎn)個(gè)在看吧??

          瀏覽 63
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  操逼视频黄 | 亚洲无码视频观看 | 色色网址| 操逼黄色网址 | 北条麻妃一区二区三区在线播放 |