稱霸Kaggle的十大深度學(xué)習(xí)技巧!
是什么秘訣讓新手們在短期內(nèi)快速掌握并能構(gòu)建最先進的DL算法?一位名叫塞繆爾(Samuel Lynn-Evans)的法國學(xué)員總結(jié)了十條經(jīng)驗。

他這篇文章發(fā)表在FloydHub官方博客上,因為除了來自Fast.ai的技巧之外,他還用了FloydHub的免設(shè)置深度學(xué)習(xí)GPU云平臺。
接下來,我們看看他從fast.ai學(xué)來的十大技藝:
1. 使用Fast.ai庫
這一條最為簡單直接。
from?fast.ai?import?*??
Fast.ai庫是一個新手友好型的深度學(xué)習(xí)工具箱,而且是目前復(fù)現(xiàn)最新算法的首要之選。
每當(dāng)Fast.ai團隊及AI研究者發(fā)現(xiàn)一篇有趣論文時,會在各種數(shù)據(jù)集上進行測試,并確定合適的調(diào)優(yōu)方法。他們會把效果較好的模型實現(xiàn)加入到這個函數(shù)庫中,用戶可以快速載入這些模型。
于是,F(xiàn)ast.ai庫成了一個功能強大的工具箱,能夠快速載入一些當(dāng)前最新的算法實現(xiàn),如帶重啟的隨機梯度下降算法、差分學(xué)習(xí)率和測試時增強等等,這里不逐一提及了。
下面會分別介紹這些技術(shù),并展示如何使用Fast.ai庫來快速使用它們。
這個函數(shù)庫是基于PyTorch構(gòu)建,構(gòu)建模型時可以流暢地使用。
Fast.ai庫地址:
https://github.com/fastai/fastai
2. 使用多個而不是單一學(xué)習(xí)率

差分學(xué)習(xí)率(Differential Learning rates)意味著在訓(xùn)練時變換網(wǎng)絡(luò)層比提高網(wǎng)絡(luò)深度更重要。
基于已有模型來訓(xùn)練深度學(xué)習(xí)網(wǎng)絡(luò),這是一種被驗證過很可靠的方法,可以在計算機視覺任務(wù)中得到更好的效果。
大部分已有網(wǎng)絡(luò)(如Resnet、VGG和Inception等)都是在ImageNet數(shù)據(jù)集訓(xùn)練的,因此我們要根據(jù)所用數(shù)據(jù)集與ImageNet圖像的相似性,來適當(dāng)改變網(wǎng)絡(luò)權(quán)重。
在修改這些權(quán)重時,我們通常要對模型的最后幾層進行修改,因為這些層被用于檢測基本特征(如邊緣和輪廓),不同數(shù)據(jù)集有著不同基本特征。
首先,要使用Fast.ai庫來獲得預(yù)訓(xùn)練的模型,代碼如下:
from?fastai.conv_learner?import?*
#?import?library?for?creating?learning?object?for?convolutional?#networks
model?=?VVG16()
#?assign?model?to?resnet,?vgg,?or?even?your?own?custom?model
PATH?=?'./folder_containing_images'?
data?=?ImageClassifierData.from_paths(PATH)
#?create?fast?ai?data?object,?in?this?method?we?use?from_paths?where?
#?inside?PATH?each?image?class?is?separated?into?different?folders
learn?=?ConvLearner.pretrained(model,?data,?precompute=True)
#?create?a?learn?object?to?quickly?utilise?state?of?the?art
#?techniques?from?the?fast?ai?library
創(chuàng)建學(xué)習(xí)對象之后(learn object),通過快速凍結(jié)前面網(wǎng)絡(luò)層并微調(diào)后面網(wǎng)絡(luò)層來解決問題:
learn.freeze()
#?freeze?layers?up?to?the?last?one,?so?weights?will?not?be?updated.
learning_rate?=?0.1
learn.fit(learning_rate,?epochs=3)
#?train?only?the?last?layer?for?a?few?epochs
當(dāng)后面網(wǎng)絡(luò)層產(chǎn)生了良好效果,我們會應(yīng)用差分學(xué)習(xí)率來改變前面網(wǎng)絡(luò)層。在實際中,一般將學(xué)習(xí)率的縮小倍數(shù)設(shè)置為10倍:
learn.unfreeze()
#?set?requires_grads?to?be?True?for?all?layers,?so?they?can?be?updated
learning_rate?=?[0.001,?0.01,?0.1]
#?learning?rate?is?set?so?that?deepest?third?of?layers?have?a?rate?of?0.001,?#?middle?layers?have?a?rate?of?0.01,?and?final?layers?0.1.
learn.fit(learning_rate,?epochs=3)
#?train?model?for?three?epoch?with?using?differential?learning?rates
3. 如何找到合適的學(xué)習(xí)率
學(xué)習(xí)率是神經(jīng)網(wǎng)絡(luò)訓(xùn)練中最重要的超參數(shù),沒有之一,但之前在實際應(yīng)用中很難為神經(jīng)網(wǎng)絡(luò)選擇最佳的學(xué)習(xí)率。
Leslie Smith的一篇周期性學(xué)習(xí)率論文發(fā)現(xiàn)了答案,這是一個相對不知名的發(fā)現(xiàn),直到它被Fast.ai課程推廣后才逐漸被廣泛使用。
這篇論文是:Cyclical Learning Rates for Training Neural Networks
https://arxiv.org/abs/1506.01186
在這種方法中,我們嘗試使用較低學(xué)習(xí)率來訓(xùn)練神經(jīng)網(wǎng)絡(luò),但是在每個批次中以指數(shù)形式增加,相應(yīng)代碼如下:
learn.lr_find()
#?run?on?learn?object?where?learning?rate?is?increased??exponentially
learn.sched.plot_lr()
#?plot?graph?of?learning?rate?against?iterations

同時,記錄每個學(xué)習(xí)率對應(yīng)的Loss值,然后畫出學(xué)習(xí)率和Loss值的關(guān)系圖:
learn.sched.plot()
#?plots?the?loss?against?the?learning?rate

通過找出學(xué)習(xí)率最高且Loss值仍在下降的值來確定最佳學(xué)習(xí)率。在上述情況中,該值將為0.01。
4. 余弦退火
在采用批次隨機梯度下降算法時,神經(jīng)網(wǎng)絡(luò)應(yīng)該越來越接近Loss值的全局最小值。當(dāng)它逐漸接近這個最小值時,學(xué)習(xí)率應(yīng)該變得更小來使得模型不會超調(diào)且盡可能接近這一點。
余弦退火(Cosine annealing)利用余弦函數(shù)來降低學(xué)習(xí)率,進而解決這個問題,如下圖所示:

從上圖可以看出,隨著x的增加,余弦值首先緩慢下降,然后加速下降,再次緩慢下降。這種下降模式能和學(xué)習(xí)率配合,以一種十分有效的計算方式來產(chǎn)生很好的效果。
learn.fit(0.1,?1)
#?Calling?learn?fit?automatically?takes?advantage?of?cosine?annealing
我們可以用Fast.ai庫中的**learn.fit()**函數(shù),來快速實現(xiàn)這個算法,在整個周期中不斷降低學(xué)習(xí)率,如下圖所示:

同時,在這種方法基礎(chǔ)上,我們可以進一步引入重啟機制。
5. 帶重啟的SGD算法
在訓(xùn)練時,梯度下降算法可能陷入局部最小值,而不是全局最小值。

梯度下降算法可以通過突然提高學(xué)習(xí)率,來“跳出”局部最小值并找到通向全局最小值的路徑。這種方式稱為帶重啟的隨機梯度下降方法(stochastic gradient descent with restarts,?SGDR),這個方法在Loshchilov和Hutter的ICLR論文中展示出了很好的效果。
這篇論文是:SGDR: Stochastic Gradient Descent with Warm Restarts
https://arxiv.org/abs/1608.03983
用Fast.ai庫可以快速導(dǎo)入SGDR算法。當(dāng)調(diào)用learn.fit(learning_rate, epochs)函數(shù)時,學(xué)習(xí)率在每個周期開始時重置為參數(shù)輸入時的初始值,然后像上面余弦退火部分描述的那樣,逐漸減小。

每當(dāng)學(xué)習(xí)率下降到最小點,在上圖中為每100次迭代,我們稱為一個循環(huán)。
cycle_len?=?1
#?decide?how?many?epochs?it?takes?for?the?learning?rate?to?fall?to
#?its?minimum?point.?In?this?case,?1?epoch
cycle_mult=2
#?at?the?end?of?each?cycle,?multiply?the?cycle_len?value?by?2
learn.fit(0.1,?3,?cycle_len=2,?cycle_mult=2)
#?in?this?case?there?will?be?three?restarts.?The?first?time?with
#?cycle_len?of?1,?so?it?will?take?1?epoch?to?complete?the?cycle.
#?cycle_mult=2?so?the?next?cycle?with?have?a?length?of?two?epochs,?
#?and?the?next?four.

利用這些參數(shù),和使用差分學(xué)習(xí)率,這些技巧是Fast.ai用戶在圖像分類問題上取得良好效果的關(guān)鍵。
Fast.ai論壇有個帖子專門討論Cycle_mult和cycle_len函數(shù),地址在這里:
http://forums.fast.ai/t/understanding-cycle-len-and-cycle-mult/9413/8
更多關(guān)于學(xué)習(xí)率的詳細內(nèi)容可參考這個Fast.ai課程:
http://course.fast.ai/lessons/lesson2.html
6. 人格化你的激活函數(shù)
Softmax只喜歡選擇一樣?xùn)|西;
Sigmoid想知道你在[-1, 1]區(qū)間上的位置,并不關(guān)心你超出這些值后的增加量;
Relu是一名俱樂部保鏢,要將負數(shù)拒之門外。
……
以這種思路對待激活函數(shù),看起來很愚蠢,但是安排一個角色后能確保把他們用到正確任務(wù)中。
正如fast.ai創(chuàng)始人Jeremy Howard指出,不少學(xué)術(shù)論文中也把Softmax函數(shù)用在多分類問題中。在DL學(xué)習(xí)過程中,我也看到它在論文和博客中多次使用不當(dāng)。
7. 遷移學(xué)習(xí)在NLP問題中非常有效
正如預(yù)訓(xùn)練好的模型在計算機視覺任務(wù)中很有效一樣,已有研究表明,自然語言處理(NLP)模型也可以從這種方法中受益。
在Fast.ai第4課中,Jeremy Howard用遷移學(xué)習(xí)方法建立了一個模型,來判斷IMDB上的電影評論是積極的還是消極的。
這種方法的效果立竿見影,他所達到的準(zhǔn)確率超過了Salesforce論文中展示的所有先前模型:
https://einstein.ai/research/learned-in-translation-contextualized-word-vectors。

這個模型的關(guān)鍵在于先訓(xùn)練模型來獲得對語言的一些理解,然后再使用這種預(yù)訓(xùn)練好的模型作為新模型的一部分來分析情緒。
為了創(chuàng)建第一個模型,我們訓(xùn)練了一個循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)來預(yù)測文本序列中的下個單詞,這稱為語言建模。當(dāng)訓(xùn)練后網(wǎng)絡(luò)的準(zhǔn)確率達到一定值,它對每個單詞的編碼模式就會傳遞給用于情感分析的新模型。
在上面的例子中,我們看到這個語言模型與另一個模型集成后用于情感分析,但是這種方法可以應(yīng)用到其他任何NLP任務(wù)中,包括翻譯和數(shù)據(jù)提取。
而且,計算機視覺中的一些技巧,也同樣適用于此,如上面提到的凍結(jié)網(wǎng)絡(luò)層和使用差分學(xué)習(xí)率,在這里也能取得更好的效果。
這種方法在NLP任務(wù)上的使用涉及很多細節(jié),這里就不貼出代碼了,可訪問相應(yīng)課程和代碼。
課程:
http://course.fast.ai/lessons/lesson4.html
代碼:https://github.com/fastai/fastai/blob/master/courses/dl1/lesson4-imdb.ipynb
8. 深度學(xué)習(xí)在處理結(jié)構(gòu)化數(shù)據(jù)上的優(yōu)勢
Fast.ai課程中展示了深度學(xué)習(xí)在處理結(jié)構(gòu)化數(shù)據(jù)上的突出表現(xiàn),且無需借助特征工程以及領(lǐng)域內(nèi)的特定知識。
這個庫充分利用了PyTorch中embedding函數(shù),允許將分類變量快速轉(zhuǎn)換為嵌入矩陣。
他們展示出的技術(shù)比較簡單直接,只需將分類變量轉(zhuǎn)換為數(shù)字,然后為每個值分配嵌入向量:

在這類任務(wù)上,傳統(tǒng)做法是創(chuàng)建虛擬變量,即進行一次熱編碼。與之相比,這種方式的優(yōu)點是用四個數(shù)值代替一個數(shù)值來描述每一天,因此可獲得更高的數(shù)據(jù)維度和更豐富的關(guān)系。
這種方法在Rossman Kaggle比賽中獲得第三名,惜敗于兩位利用專業(yè)知識來創(chuàng)建許多額外特征的領(lǐng)域?qū)<摇?/p>
相關(guān)課程:
http://course.fast.ai/lessons/lesson4.html
代碼:
https://github.com/fastai/fastai/blob/master/courses/dl1/lesson3-rossman.ipynb
這種用深度學(xué)習(xí)來減少對特征工程依賴的思路,也被Pinterest證實過。他也提到過,他們正努力通過深度學(xué)習(xí)模型,期望用更少的工作量來獲得更好的效果。
9. 更多內(nèi)置函數(shù):Dropout層、尺寸設(shè)置、TTA
4月30日,F(xiàn)ast.ai團隊在斯坦福大學(xué)舉辦的DAWNBench競賽中,贏得了基于Imagenet和CIFAR10的分類任務(wù)。在Jeremy的奪冠總結(jié)中,他將這次成功歸功于fast.ai庫中的一些額外函數(shù)。
其中之一是Dropout層,由Geoffrey Hinton兩年前在一篇開創(chuàng)性的論文中提出。它最初很受歡迎,但在最近的計算機視覺論文中似乎有所忽略。這篇論文是:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting:
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
然而,PyTorch庫使它的實現(xiàn)變得很簡單,用Fast.ai庫加載它就更容易了。

Dropout函數(shù)能減弱過擬合效應(yīng),因此要在CIFAR-10這樣一個相對較小的數(shù)據(jù)集上取勝,這點很重要。在創(chuàng)建learn對象時,F(xiàn)ast.ai庫會自動加入dropout函數(shù),同時可使用ps變量來修改參數(shù),如下所示:
learn?=?ConvLearner.pretrained(model,?data,?ps=0.5,?precompute=True)
#?creates?a?dropout?of?0.5?(i.e.?half?the?activations)?on?test?dataset.?
#?This?is?automatically?turned?off?for?the?validation?set
有一種很簡單有效的方法,經(jīng)常用來處理過擬合效應(yīng)和提高準(zhǔn)確性,它就是訓(xùn)練小尺寸圖像,然后增大尺寸并再次訓(xùn)練相同模型。
#?create?a?data?object?with?images?of?sz?*?sz?pixels?
def?get_data(sz):?
????tmfs?=?tfms_from_model(model,?sz)
????#?tells?what?size?images?should?be,?additional?transformations?such
????#?image?flips?and?zooms?can?easily?be?added?here?too
????data?=?ImageClassifierData.from_paths(PATH,?tfms=tfms)
????#?creates?fastai?data?object?of?create?size
????return?data
learn.set_data(get_data(299))
#?changes?the?data?in?the?learn?object?to?be?images?of?size?299
#?without?changing?the?model.
learn.fit(0.1,?3)
#?train?for?a?few?epochs?on?larger?versions?of?images,?avoiding?overfitting
還有一種先進技巧,可將準(zhǔn)確率提高若干個百分點,它就是測試時增強(test time augmentation,?TTA)。這里會為原始圖像造出多個不同版本,包括不同區(qū)域裁剪和更改縮放程度等,并將它們輸入到模型中;然后對多個版本進行計算得到平均輸出,作為圖像的最終輸出分?jǐn)?shù),可調(diào)用learn.TTA()來使用該算法。
preds,?target?=?learn.TTA()
這種技術(shù)很有效,因為原始圖像顯示的區(qū)域可能會缺少一些重要特征,在模型中輸入圖像的多個版本并取平均值,能解決上述問題。
10. 創(chuàng)新力很關(guān)鍵
在DAWNBench比賽中,F(xiàn)ast.ai團隊提出的模型不僅速度最快,而且計算成本低。要明白,要構(gòu)建成功的DL應(yīng)用,不只是一個利用大量GPU資源的計算任務(wù),而應(yīng)該是一個需要創(chuàng)造力、直覺和創(chuàng)新力的問題。
本文中討論的一些突破,包括Dropout層、余弦退火和帶重啟的SGD方法等,實際上是研究者針對一些問題想到的不同解決方式。與簡單地增大訓(xùn)練數(shù)據(jù)集相比,能更好地提升準(zhǔn)確率。
硅谷的很多大公司有大量GPU資源,但是,不要認(rèn)為他們的先進效果遙不可及,你也能靠創(chuàng)新力提出一些新思路,來挑戰(zhàn)效果排行榜。
事實上,有時計算力的局限也是一種機會,因為需求是創(chuàng)新的動力源泉。
關(guān)于作者
Samuel Lynn-Evans過去10年一直在教授生命科學(xué)課程,注意到機器學(xué)習(xí)在科學(xué)研究中的巨大潛力后,他開始在巴黎42學(xué)校學(xué)習(xí)人工智能,想將NLP技術(shù)應(yīng)用到生物學(xué)和醫(yī)學(xué)問題中。
原文:https://blog.floydhub.com/ten-techniques-from-fast-ai/
干貨學(xué)習(xí),點贊三連↓
