PHP-FPM源碼分析
作者:ethread
來(lái)源:SegmentFault 思否

一個(gè)請(qǐng)求從瀏覽器到達(dá)PHP腳本執(zhí)行中間有個(gè)必要模塊是網(wǎng)絡(luò)處理模塊,F(xiàn)PM是這個(gè)模塊的一部分,配合fastcgi協(xié)議實(shí)現(xiàn)對(duì)請(qǐng)求的從監(jiān)聽(tīng)到轉(zhuǎn)發(fā)到PHP處理,并將結(jié)果返回這條流程。
FPM采用多進(jìn)程模型,就是創(chuàng)建一個(gè)master進(jìn)程,在master進(jìn)程中創(chuàng)建并監(jiān)聽(tīng)socket,然后fork多個(gè)子進(jìn)程,然后子進(jìn)程各自accept請(qǐng)求,子進(jìn)程在啟動(dòng)后阻塞在accept上,有請(qǐng)求到達(dá)后開始讀取請(qǐng)求 數(shù)據(jù),讀取完成后開始處理然后再返回,在這期間是不會(huì)接收其它請(qǐng)求的,也就是說(shuō)fpm的子進(jìn)程同時(shí)只能響應(yīng) 一個(gè)請(qǐng)求,只有把這個(gè)請(qǐng)求處理完成后才會(huì)accept下一個(gè)請(qǐng)求,這是一種同步阻塞的模型。master進(jìn)程負(fù)責(zé)管理子進(jìn)程,監(jiān)聽(tīng)子進(jìn)程的狀態(tài),控制子進(jìn)程的數(shù)量。master進(jìn)程與worker進(jìn)程之間通過(guò)共享變量同步信息。
從main函數(shù)開始
int main(int argc, char *argv[]){zend_signal_startup();// 將全局變量sapi_module設(shè)置為cgi_sapi_modulesapi_startup(&cgi_sapi_module);fcgi_init();// 獲取命令行參數(shù),其中php-fpm -D、-i等參數(shù)都是在這里被解析出來(lái)的// ...cgi_sapi_module.startup(&cgi_sapi_module);fpm_init(argc, argv, fpm_config ? fpm_config : CGIG(fpm_config), fpm_prefix, fpm_pid, test_conf, php_allow_to_run_as_root, force_daemon, force_stderr);// master進(jìn)程會(huì)在這一步死循環(huán),后面的流程都是子進(jìn)程在執(zhí)行。fcgi_fd = fpm_run(&max_requests);fcgi_fd = fpm_run(&max_requests);request = fpm_init_request(fcgi_fd);// accept請(qǐng)求// ....}
main()函數(shù)展現(xiàn)了這個(gè)fpm運(yùn)行完整的框架,可見(jiàn)整個(gè)fpm主要分為三個(gè)部分:1、運(yùn)行前的fpm_init();2、運(yùn)行函數(shù)fpm_run();3、子進(jìn)程accept請(qǐng)求處理。
FPM中的事件監(jiān)聽(tīng)機(jī)制
在詳細(xì)了解fpm工作過(guò)程前,我們要先了解fpm中的事件機(jī)制。在fpm中事件的監(jiān)聽(tīng)默認(rèn)使用kqueue來(lái)實(shí)現(xiàn),關(guān)于kqueue的介紹可以看看我之前整理的這篇文章kqueue用法簡(jiǎn)介。
// fpm中的事件結(jié)構(gòu)體struct fpm_event_s {// 事件的句柄int fd;// 下一次觸發(fā)的事件struct timeval timeout;// 頻率:多久執(zhí)行一次struct timeval frequency;// 事件觸發(fā)時(shí)調(diào)用的函數(shù)void (*callback)(struct fpm_event_s *, short, void *);void *arg; // 調(diào)用callback時(shí)的參數(shù)// FPM_EV_READ:讀;FPM_EV_TIMEOUT:;FPM_EV_PERSIST:;FPM_EV_EDGE:;int flags;int index; // 在fd句柄數(shù)組中的索引// 事件的類型 FPM_EV_READ:讀;FPM_EV_TIMEOUT:計(jì)時(shí)器;FPM_EV_PERSIST:;FPM_EV_EDGE:;short which;};// 事件隊(duì)列typedef struct fpm_event_queue_s {struct fpm_event_queue_s *prev;struct fpm_event_queue_s *next;struct fpm_event_s *ev;} fpm_event_queue;
以fpm_run()中master進(jìn)程注冊(cè)的一個(gè)sp[0]的可讀事件為例:
void fpm_event_loop(int err){static struct fpm_event_s signal_fd_event;// 創(chuàng)建一個(gè)事件:管道sp[0]可讀時(shí)觸發(fā)fpm_event_set(&signal_fd_event, fpm_signals_get_fd(), FPM_EV_READ, &fpm_got_signal, NULL);// 將事件添加進(jìn)queuefpm_event_add(&signal_fd_event, 0);// 處理定時(shí)器等邏輯// 以阻塞的方式獲取事件// module->wait()是一個(gè)接口定義的方法簽名,下面展示kqueue的實(shí)現(xiàn)ret = module->wait(fpm_event_queue_fd, timeout);}int fpm_event_add(struct fpm_event_s *ev, unsigned long int frequency){// ...// 如果事件是觸發(fā)事件則之間添加進(jìn)queue中// 對(duì)于定時(shí)器事件先根據(jù)事件的frequency設(shè)置事件的觸發(fā)頻率和下一次觸發(fā)的事件if (fpm_event_queue_add(&fpm_event_queue_timer, ev) != 0) {return -1;}return 0;}static int fpm_event_queue_add(struct fpm_event_queue_s **queue, struct fpm_event_s *ev){// ...// 構(gòu)建并將當(dāng)前事件插入事件隊(duì)列queue中if (*queue == fpm_event_queue_fd && module->add) {// module->add(ev)是一個(gè)接口定義的方法簽名,下面展示kqueue的實(shí)現(xiàn)module->add(ev);}return 0;}// kqueue關(guān)于添加事件到kqueue的實(shí)現(xiàn)static int fpm_event_kqueue_add(struct fpm_event_s *ev) /* {{{ */{struct kevent k;int flags = EV_ADD;if (ev->flags & FPM_EV_EDGE) {flags = flags | EV_CLEAR;}EV_SET(&k, ev->fd, EVFILT_READ, flags, 0, 0, (void *)ev);if (kevent(kfd, &k, 1, NULL, 0, NULL) < 0) {zlog(ZLOG_ERROR, "kevent: unable to add event");return -1;}/* mark the event as registered */ev->index = ev->fd;return 0;}
FPM中關(guān)于kqueue的實(shí)現(xiàn)
// kqueue關(guān)于從kqueue中監(jiān)聽(tīng)事件的實(shí)現(xiàn)static int fpm_event_kqueue_wait(struct fpm_event_queue_s *queue, unsigned long int timeout) /* {{{ */{struct timespec t;int ret, i;/* ensure we have a clean kevents before calling kevent() */memset(kevents, 0, sizeof(struct kevent) * nkevents);/* convert ms to timespec struct */t.tv_sec = timeout / 1000;t.tv_nsec = (timeout % 1000) * 1000 * 1000;/* wait for incoming event or timeout */ret = kevent(kfd, NULL, 0, kevents, nkevents, &t);if (ret == -1) {/* trigger error unless signal interrupt */if (errno != EINTR) {zlog(ZLOG_WARNING, "epoll_wait() returns %d", errno);return -1;}}/* fire triggered events */for (i = 0; i < ret; i++) {if (kevents[i].udata) {struct fpm_event_s *ev = (struct fpm_event_s *)kevents[i].udata;fpm_event_fire(ev);/* sanity check */if (fpm_globals.parent_pid != getpid()) {return -2;}}}return ret;}
fpm_init
fpm_init()負(fù)責(zé)啟動(dòng)前的初始化工作,包括注冊(cè)各個(gè)模塊的銷毀時(shí)用于清理變量的callback。下面只介紹幾個(gè)重要的init。
fpm_conf_init_main
負(fù)責(zé)解析php-fpm.conf配置文件,分配worker pool內(nèi)存結(jié)構(gòu)并保存到全局變量fpm_worker_all_pools中,各worker pool配置解析到 fpm_worker_pool_s->config 中。
所謂worker pool 是fpm可以同時(shí)監(jiān)聽(tīng)多個(gè)端口,每個(gè)端口對(duì)應(yīng)一個(gè)worker pool。
fpm_scoreboard_init_main
為每個(gè)worker pool分配一個(gè)fpm_scoreboard_s結(jié)構(gòu)的內(nèi)存空間scoreboard,用于記錄worker進(jìn)程運(yùn)行信息。
// fpm_scoreboard_s 結(jié)構(gòu)struct fpm_scoreboard_s {union {atomic_t lock;char dummy[16];};char pool[32];int pm; // 進(jìn)程的管理方式 static、dynamic、ondemandtime_t start_epoch;int idle; // 空閑的worker進(jìn)程數(shù)int active; // 繁忙的worker進(jìn)程數(shù)int active_max; // 最大繁忙進(jìn)程數(shù)unsigned long int requests;unsigned int max_children_reached;int lq;int lq_max;unsigned int lq_len;unsigned int nprocs;int free_proc;unsigned long int slow_rq;struct fpm_scoreboard_proc_s *procs[];};
fpm_signals_init_main
fpm注冊(cè)自己的信號(hào)量,并設(shè)置監(jiān)聽(tīng)函數(shù)的處理邏輯。
int fpm_signals_init_main() /* {{{ */{struct sigaction act;// 創(chuàng)建一個(gè)全雙工套接字// 全雙工的套接字是一個(gè)可以讀、寫的socket通道[0]和[1],每個(gè)進(jìn)程固定一個(gè)管道。// 寫數(shù)據(jù)時(shí):管道不滿不會(huì)被阻塞;讀數(shù)據(jù)時(shí):管道里沒(méi)有數(shù)據(jù)會(huì)阻塞(可設(shè)置)// 向sp[0]寫入數(shù)據(jù)時(shí),sp[0]的讀取將會(huì)被阻塞,sp[1]的寫管道會(huì)被阻塞,sp[1]中此時(shí)讀取sp[0]的數(shù)據(jù)if (0 > socketpair(AF_UNIX, SOCK_STREAM, 0, sp)) {zlog(ZLOG_SYSERROR, "failed to init signals: socketpair()");return -1;}if (0 > fd_set_blocked(sp[0], 0) || 0 > fd_set_blocked(sp[1], 0)) {zlog(ZLOG_SYSERROR, "failed to init signals: fd_set_blocked()");return -1;}if (0 > fcntl(sp[0], F_SETFD, FD_CLOEXEC) || 0 > fcntl(sp[1], F_SETFD, FD_CLOEXEC)) {zlog(ZLOG_SYSERROR, "falied to init signals: fcntl(F_SETFD, FD_CLOEXEC)");return -1;}memset(&act, 0, sizeof(act));act.sa_handler = sig_handler; // 監(jiān)聽(tīng)到信號(hào)調(diào)用這個(gè)函數(shù)sigfillset(&act.sa_mask);if (0 > sigaction(SIGTERM, &act, 0) ||0 > sigaction(SIGINT, &act, 0) ||0 > sigaction(SIGUSR1, &act, 0) ||0 > sigaction(SIGUSR2, &act, 0) ||0 > sigaction(SIGCHLD, &act, 0) ||0 > sigaction(SIGQUIT, &act, 0)) {zlog(ZLOG_SYSERROR, "failed to init signals: sigaction()");return -1;}return 0;}// 所有信號(hào)共用同一個(gè)處理函數(shù)static void sig_handler(int signo) /* {{{ */{static const char sig_chars[NSIG + 1] = {[SIGTERM] = 'T',[SIGINT] = 'I',[SIGUSR1] = '1',[SIGUSR2] = '2',[SIGQUIT] = 'Q',[SIGCHLD] = 'C'};char s;int saved_errno;if (fpm_globals.parent_pid != getpid()) {return;}saved_errno = errno;s = sig_chars[signo];zend_quiet_write(sp[1], &s, sizeof(s)); // 將信息對(duì)應(yīng)的字節(jié)寫進(jìn)管道sp[1]端,此時(shí)sp[1]端的讀數(shù)據(jù)會(huì)阻塞;數(shù)據(jù)可以從sp[0]端讀取errno = saved_errno;}
fpm_sockets_init_main
每個(gè)worker pool 開啟一個(gè)socket套接字。
fpm_event_init_main
這里啟動(dòng)master的事件管理器。用于管理IO、定時(shí)事件,其中IO事件通過(guò)kqueue、epoll、 poll、select等管理,定時(shí)事件就是定時(shí)器,一定時(shí)間后觸發(fā)某個(gè)事件。同樣,我們以kqueue的實(shí)現(xiàn)為例看下源碼。
int fpm_event_init_main(){// ...if (module->init(max) < 0) {zlog(ZLOG_ERROR, "Unable to initialize the event module %s", module->name);return -1;}// ...}// max用于指定kqueue事件數(shù)組的大小static int fpm_event_kqueue_init(int max) /* {{{ */{if (max < 1) {return 0;}kfd = kqueue();if (kfd < 0) {zlog(ZLOG_ERROR, "kqueue: unable to initialize");return -1;}kevents = malloc(sizeof(struct kevent) * max);if (!kevents) {zlog(ZLOG_ERROR, "epoll: unable to allocate %d events", max);return -1;}memset(kevents, 0, sizeof(struct kevent) * max);nkevents = max;return 0;}
fpm_run
fpm_init到此結(jié)束,下面進(jìn)入fpm_run階段,在這個(gè)階段master進(jìn)程會(huì)根據(jù)配置fork出多個(gè)子進(jìn)程然后master進(jìn)程會(huì)進(jìn)入fpm_event_loop(0)函數(shù),并在這個(gè)函數(shù)內(nèi)部死循環(huán),也就是說(shuō)master進(jìn)程將不再執(zhí)行后面的代碼,后面的邏輯全部是子進(jìn)程執(zhí)行的操作。
master進(jìn)程在fpm_event_loop里通過(guò)管道sp來(lái)監(jiān)聽(tīng)子進(jìn)程的各個(gè)事件,同時(shí)也要處理自身產(chǎn)生的一些事件、定時(shí)器等任務(wù),來(lái)響應(yīng)的管理子進(jìn)程。內(nèi)部的邏輯在介紹事件監(jiān)聽(tīng)機(jī)制時(shí)已經(jīng)詳細(xì)說(shuō)過(guò)。
int fpm_run(int *max_requests) /* {{{ */{struct fpm_worker_pool_s *wp;/* create initial children in all pools */for (wp = fpm_worker_all_pools; wp; wp = wp->next) {int is_parent;is_parent = fpm_children_create_initial(wp);if (!is_parent) {goto run_child;}}/* run event loop forever */fpm_event_loop(0);run_child: /* only workers reach this point */fpm_cleanups_run(FPM_CLEANUP_CHILD);*max_requests = fpm_globals.max_requests;return fpm_globals.listening_socket;}
子進(jìn)程處理請(qǐng)求
回到main函數(shù),fpm_run后面的邏輯都是子進(jìn)程在運(yùn)行。首先會(huì)初始化一個(gè)fpm的request結(jié)構(gòu)的變量,然后子進(jìn)程會(huì)阻塞在fcgi_accept_request(request)函數(shù)上等待請(qǐng)求。關(guān)于fcgi_accept_request函數(shù)就是死循環(huán)一個(gè)socket編程的accept函數(shù)來(lái)接收請(qǐng)求,并將請(qǐng)求數(shù)據(jù)全部取出。
...
// 初始化requestrequest = fpm_init_request(fcgi_fd);zend_first_try {// accept接收請(qǐng)求while (EXPECTED(fcgi_accept_request(request) >= 0)) {init_request_info();fpm_request_info();if (UNEXPECTED(php_request_startup() == FAILURE)) {// ...}if (UNEXPECTED(fpm_status_handle_request())) {goto fastcgi_request_done;}...// 打開配置文件中DOCUMENT_ROOT設(shè)置的腳本if (UNEXPECTED(php_fopen_primary_script(&file_handle) == FAILURE)) {...}fpm_request_executing();// 執(zhí)行腳本php_execute_script(&file_handle);...}// 銷毀請(qǐng)求requestfcgi_destroy_request(request);// fcgi退出fcgi_shutdown();if (cgi_sapi_module.php_ini_path_override) {free(cgi_sapi_module.php_ini_path_override);}if (cgi_sapi_module.ini_entries) {free(cgi_sapi_module.ini_entries);}} zend_catch {...} zend_end_try();

