<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          pytorch-Deep-LearningDeep Learning (with PyTorch)

          聯(lián)合創(chuàng)作 · 2023-09-26 03:23

          Deep Learning (with PyTorch) Binder

          This notebook repository now has a companion website, where all the course material can be found in video and textual format.

          ????   ????   ????   ????   ????   ????   ????   ????   ????   ????   ????   ????   ????   ????   ????

          Getting started

          To be able to follow the exercises, you are going to need a laptop with Miniconda (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal.

          Download and install Miniconda

          Please go to the Anaconda website. Download and install the latest Miniconda version for Python 3.7 for your operating system.

          wget <http:// link to miniconda>
          sh <miniconda*.sh>

          Check-out the git repository with the exercise

          Once Miniconda is ready, checkout the course repository and proceed with setting up the environment:

          git clone https://github.com/Atcold/pytorch-Deep-Learning

          Create isolated Miniconda environment

          Change directory (cd) into the course folder, then type:

          # cd pytorch-Deep-Learning
          conda env create -f environment.yml
          source activate pDL

          Start Jupyter Notebook or JupyterLab

          Start from terminal as usual:

          jupyter lab

          Or, for the classic interface:

          jupyter notebook

          Notebooks visualisation

          Jupyter Notebooks are used throughout these lectures for interactive data exploration and visualisation.

          We use dark styles for both GitHub and Jupyter Notebook. You should try to do the same, or they will look ugly. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface. To see the content appropriately in the classic interface install the following:

          瀏覽 13
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          編輯 分享
          舉報(bào)
          評論
          圖片
          表情
          推薦
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          編輯 分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  久久夜色精品网站 | 久草草草草草亚洲 | 午夜欧美精品久久久久久久 | 久久夜色精品国产噜噜v6 | 日本a不卡 |