fastbloom高性能布隆過濾器
fastbloom 是使用 Rust 實(shí)現(xiàn)的 bloom filter(布隆過濾器) | counting bloom filter(計(jì)數(shù)布隆過濾器) Python 庫及 Rust 庫。比目前廣泛使用的 pybloom-live 插入性能大約快10倍以上。
如果對(duì)您有幫助,麻煩給項(xiàng)目點(diǎn)個(gè)贊吧^v^
setup
Python
requirements
Python >= 3.7
install
使用如下命令安裝 fastbloom 最新版本:
pip install fastbloom-rs
Rust
fastbloom-rs = "{latest}"
Examples
BloomFilter
布隆過濾器(Bloom Filter)是1970年由布隆提出的。它實(shí)際上是一個(gè)很長(zhǎng)的二進(jìn)制向量和一系列隨機(jī)映射函數(shù)。布隆過濾器 可以用于檢索一個(gè)元素是否在一個(gè)集合中。它的優(yōu)點(diǎn)是空間效率和查詢時(shí)間都比一般的算法要好的多,缺點(diǎn)是有一定的誤識(shí)別率和刪除困難。
參考: Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7), 422-426. 全文
Python
基礎(chǔ)用法
from fastbloom_rs import BloomFilter bloom = BloomFilter(100_000_000, 0.01) bloom.add_str('hello') bloom.add_bytes(b'world') bloom.add_int(9527) assert bloom.contains('hello') assert bloom.contains(b'world') assert bloom.contains(9527) assert not bloom.contains('hello world')
基于 bytes 或者 list 構(gòu)造布隆過濾器
from fastbloom_rs import BloomFilter bloom = BloomFilter(100_000_000, 0.01) bloom.add_str('hello') assert bloom.contains('hello') bloom2 = BloomFilter.from_bytes(bloom.get_bytes(), bloom.hashes()) assert bloom2.contains('hello') bloom3 = BloomFilter.from_int_array(bloom.get_int_array(), bloom.hashes()) assert bloom3.contains('hello')
更多例子參考 py_tests.
Rust
use fastbloom_rs::{BloomFilter, FilterBuilder}; let mut bloom = FilterBuilder::new(100_000_000, 0.01).build_bloom_filter(); bloom.add(b"helloworld"); assert_eq!(bloom.contains(b"helloworld"), true); assert_eq!(bloom.contains(b"helloworld!"), false);
更多例子參考 docs.rs
CountingBloomFilter
計(jì)數(shù)布隆過濾器的工作方式與常規(guī)布隆過濾器類似;但是,它能夠跟蹤插入和刪除。在計(jì)數(shù)布隆過濾器中,布隆過濾器的每個(gè) 條目都是一個(gè)與基本布隆過濾器位相關(guān)聯(lián)的小計(jì)數(shù)器。
參考: F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An Improved Construction for Counting Bloom Filters,” in 14th Annual European Symposium on Algorithms, LNCS 4168, 2006
Python
from fastbloom_rs import CountingBloomFilter cbf = CountingBloomFilter(1000_000, 0.01) cbf.add('hello') cbf.add('hello') assert 'hello' in cbf cbf.remove('hello') assert 'hello' in cbf # because 'hello' added twice. # If add same element larger than 15 times, then remove 15 times the filter will not contain the element. cbf.remove('hello') assert 'hello' not in cbf
本計(jì)數(shù)布隆過濾器使用4bit計(jì)數(shù)器存儲(chǔ)hash索引,所以當(dāng)重復(fù)插入同一個(gè)元素到過濾器中,計(jì)數(shù)器很快就會(huì)位溢出, 所以可以設(shè)置 enable_repeat_insert 為 False 用于避免重復(fù)插入,如果元素已經(jīng)加入過濾器中,設(shè)置 enable_repeat_insert 為 False 將使元素不會(huì)重復(fù)插入。 enable_repeat_insert 默認(rèn)為 True。
from fastbloom_rs import CountingBloomFilter cbf = CountingBloomFilter(1000_000, 0.01, False) cbf.add('hello') cbf.add('hello') # because enable_repeat_insert=False, this addition will not take effect. assert 'hello' in cbf cbf.remove('hello') assert 'hello' not in cbf
更多例子參考 py_tests.
Rust
use fastbloom_rs::{CountingBloomFilter, FilterBuilder}; let mut builder = FilterBuilder::new(100_000, 0.01); let mut cbf = builder.build_counting_bloom_filter(); cbf.add(b"helloworld"); assert_eq!(bloom.contains(b"helloworld"), true);
benchmark
computer info
| CPU | Memory | OS |
|---|---|---|
| AMD Ryzen 7 5800U with Radeon Graphics | 16G | Windows 10 |
add one str to bloom filter
測(cè)試添加一個(gè)字符串到布隆過濾器:
bloom_add_test time: [41.168 ns 41.199 ns 41.233 ns]
change: [-0.4891% -0.0259% +0.3417%] (p = 0.91 > 0.05)
No change in performance detected.
Found 13 outliers among 100 measurements (13.00%)
1 (1.00%) high mild
12 (12.00%) high severe
add one million to bloom filter
添加一百萬字符串((1..1_000_000).map(|n| { n.to_string() }))到布隆過濾器:
bloom_add_all_test time: [236.24 ms 236.86 ms 237.55 ms]
change: [-3.4346% -2.9050% -2.3524%] (p = 0.00 < 0.05)
Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
4 (4.00%) high mild
1 (1.00%) high severe
check one contains in bloom filter
測(cè)試布隆過濾器包含的元素:
bloom_contains_test time: [42.065 ns 42.102 ns 42.156 ns]
change: [-0.7830% -0.5901% -0.4029%] (p = 0.00 < 0.05)
Change within noise threshold.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) low mild
5 (5.00%) high mild
9 (9.00%) high severe
check one not contains in bloom filter
測(cè)試布隆過濾器不包含的元素:
bloom_not_contains_test time: [22.695 ns 22.727 ns 22.773 ns]
change: [-3.1948% -2.9695% -2.7268%] (p = 0.00 < 0.05)
Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
4 (4.00%) high mild
8 (8.00%) high severe
add one str to counting bloom filter
測(cè)試添加一個(gè)字符串到計(jì)數(shù)布隆過濾器:
counting_bloom_add_test time: [60.822 ns 60.861 ns 60.912 ns]
change: [+0.2427% +0.3772% +0.5579%] (p = 0.00 < 0.05)
Change within noise threshold.
Found 10 outliers among 100 measurements (10.00%)
1 (1.00%) low severe
4 (4.00%) low mild
1 (1.00%) high mild
4 (4.00%) high severe
add one million to counting bloom filter
添加一百萬字符串((1..1_000_000).map(|n| { n.to_string() }))到計(jì)數(shù)布隆過濾器:
counting_bloom_add_million_test
time: [272.48 ms 272.58 ms 272.68 ms]
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) low mild
1 (1.00%) high mild
