費(fèi)馬大定理
《國外數(shù)學(xué)名著系列79:費(fèi)馬大定理(代數(shù)數(shù)論的原始導(dǎo)引)(影印版)》介紹了著名的費(fèi)馬大定理的發(fā)展,從費(fèi)馬大定理起至Kummer的理論結(jié)束,以此介紹代數(shù)數(shù)論。而一些更基礎(chǔ)的理論,如Euler證明x+y=z的不可能性,則以更簡單的方式闡述。一些新的理論和工具則通過具體問題加以介紹。這本專著還詳細(xì)介紹了Kummer理論在二次積分的應(yīng)用及其與Gauss理論的聯(lián)系,這部分理論在其他專著中都未曾有過介紹。
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development,beginning with the work of Fermat and ending with Ku...
《國外數(shù)學(xué)名著系列79:費(fèi)馬大定理(代數(shù)數(shù)論的原始導(dǎo)引)(影印版)》介紹了著名的費(fèi)馬大定理的發(fā)展,從費(fèi)馬大定理起至Kummer的理論結(jié)束,以此介紹代數(shù)數(shù)論。而一些更基礎(chǔ)的理論,如Euler證明x+y=z的不可能性,則以更簡單的方式闡述。一些新的理論和工具則通過具體問題加以介紹。這本專著還詳細(xì)介紹了Kummer理論在二次積分的應(yīng)用及其與Gauss理論的聯(lián)系,這部分理論在其他專著中都未曾有過介紹。
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development,beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book。
