<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          完美通俗解讀小波變換,終于懂了小波是什么

          共 5026字,需瀏覽 11分鐘

           ·

          2021-09-18 03:26

          來源:EDN電子技術(shù)設(shè)計

          要講小波變換,我們必須了解傅立葉變換。要了解傅立葉變換,我們先要弄清楚什么是”變換“。很多處理,不管是壓縮也好,濾波也好,圖形處理也好,本質(zhì)都是變換。


          變換的是什么東西呢?是基,也就是basis。如果你暫時有些遺忘了basis的定義,那么簡單說,在線性代數(shù)里,basis是指空間里一系列線性獨立的向量,而這個空間里的任何其他向量,都可以由這些個向量的線性組合來表示。那basis在變換里面啥用呢?


          比如說吧,傅立葉展開的本質(zhì),就是把一個空間中的信號用該空間的某個basis的線性組合表示出來,要這樣表示的原因,是因為傅立葉變換的本質(zhì),是。小波變換自然也不例外的和basis有關(guān)了。再比如你用Photoshop去處理圖像,里面的圖像拉伸,反轉(zhuǎn),等等一系列操作,都是和basis的改變有關(guān)。


          既然這些變換都是在搞基,那我們自然就容易想到,這個basis的選取非常重要,因為basis的特點決定了具體的計算過程。一個空間中可能有很多種形式的basis,什么樣的basis比較好,很大程度上取決于這個basis服務(wù)于什么應(yīng)用。


          比如如果我們希望選取有利于壓縮的話,那么就希望這個basis能用其中很少的向量來最大程度地表示信號,這樣即使把別的向量給砍了,信號也不會損失很多。而如果是圖形處理中常見的線性變換,最省計算量的完美basis就是eigenvector basis了,因為此時變換矩陣T對它們的作用等同于對角矩陣(Tv_n=av_n,a是eigenvalue)。


          總的來說,拋開具體的應(yīng)用不談,所有的basis,我們都希望它們有一個共同的特點,那就是,容易計算,用最簡單的方式呈現(xiàn)最多的信號特性。


          好,現(xiàn)在我們對變換有了基本的認(rèn)識,知道他們其實就是在搞基。當(dāng)然,搞基也是分形式的,不同的變換,搞基的妙處各有不同。接下來先看看,傅立葉變換是在干嘛。


          傅立葉級數(shù)最早是Joseph Fourier這個人提出的,他發(fā)現(xiàn),這個basis不僅僅存在與vector space,還存在于function space。這個function space本質(zhì)上還是一個linear vector space,可以是有限的,可以是無限的,只不過在這個空間里,vector就是function了,而對應(yīng)的標(biāo)量就是實數(shù)或者復(fù)數(shù)。


          在vector space里,你有vectorv可以寫成vector basis的線性組合,那在function space里,function f(x)也可以寫成對應(yīng)function basis的線性組合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是無窮盡的,因為我的function space的維度是無窮的。好,具體來說,那就是現(xiàn)在我們有一個函數(shù),f(x)。我們希望將它寫成一些cos函數(shù)和一些sin函數(shù)的形式,像這樣



          again,這是一個無限循環(huán)的函數(shù)。其中的1,cosx,sinx,cos2x,…..這些,就是傅立葉級數(shù)。傅立葉級數(shù)應(yīng)用如此廣泛的主要原因之一,就是它們這幫子function basis是正交的,這就是有趣的地方了。為什么function basis正交如此重要呢?我們說兩個vector正交,那就是他倆的內(nèi)積為0。那對于function basis呢?function basis怎么求內(nèi)積呢?


          現(xiàn)在先復(fù)習(xí)一下vector正交的定義。我們說兩個vectorv,w如果正交的話,應(yīng)符合:


          那什么是function正交呢?假設(shè)我們有兩個函數(shù)f(x)和g(x),那是什么?我們遵循vector的思路去想,兩個vector求內(nèi)積,就是把他們相同位置上對應(yīng)的點的乘積做一個累加。那移過來,就是對每一個x點,對應(yīng)的fg做乘積,再累加。不過問題是,fg都是無限函數(shù)阿,x又是一個連續(xù)的值。怎么辦呢?向量是離散的,所以累加,函數(shù)是連續(xù)的,那就是…….積分!


          我們知道函數(shù)內(nèi)積是這樣算的了,自然也就容易證明,按照這個形式去寫的傅立葉展開,這些級數(shù)確實都是兩兩正交的。證明過程這里就不展開了。


          好,下一個問題就是,為什么它們是正交basis如此重要呢?這就牽涉到系數(shù)的求解了。我們研究了函數(shù)f,研究了級數(shù),一堆三角函數(shù)和常數(shù)1,那系數(shù)呢?a0,a1,a2這些系數(shù)該怎么確定呢?好,比如我這里準(zhǔn)備求a1了。我現(xiàn)在知道什么?信號f(x)是已知的,傅立葉級數(shù)是已知的,我們怎么求a1呢?很簡單,把方程兩端的所有部分都求和cosx的內(nèi)積,即:


          然后我們發(fā)現(xiàn),因為正交的性質(zhì),右邊所有非a1項全部消失了,因為他們和cosx的內(nèi)積都是0!所有就簡化為:


          這樣,a1就求解出來了。到這里,你就看出正交的奇妙性了吧:)


          好,現(xiàn)在我們知道,傅立葉變換就是用一系列三角波來表示信號方程的展開,這個信號可以是連續(xù)的,可以是離散的。傅立葉所用的function basis是專門挑選的,是正交的,是利于計算coefficients的。但千萬別誤解為展開變換所用的basis都是正交的,這完全取決于具體的使用需求,比如泰勒展開的basis就只是簡單的非正交多項式。


          有了傅立葉變換的基礎(chǔ),接下來,我們就看看什么是小波變換。首先來說說什么是小波。所謂波,就是在時間域或者空間域的震蕩方程,比如正弦波,就是一種波。什么是波分析?針對波的分析拉(囧)。并不是說小波分析才屬于波分析,傅立葉分析也是波分析,因為正弦波也是一種波嘛。那什么是小波呢?這個”小“,是針對傅立葉波而言的。傅立葉所用的波是什么?正弦波,這玩意以有著無窮的能量,同樣的幅度在整個無窮大區(qū)間里面振蕩,像下面這樣:



          那小波是什么呢?是一種能量在時域非常集中的波。它的能量是有限的,而且集中在某一點附近。比如下面這樣:



          這種小波有什么好處呢?它對于分析瞬時時變信號非常有用。它有效的從信號中提取信息,通過伸縮和平移等運算功能對函數(shù)或信號進行多尺度細化分析,解決了傅立葉變換不能解決的許多困難問題。恩,以上就是通常情況下你能在國內(nèi)網(wǎng)站上搜到的小波變換文章告訴你的。但為什么呢?這是我希望在這個系列文章中講清楚的。不過在這篇文章里,我先點到為止,把小波變換的重要特性以及優(yōu)點cover了,在下一篇文章中再具體推導(dǎo)這些特性。


          小波變換的本質(zhì)和傅立葉變換類似,也是用精心挑選的basis來表示信號方程。每個小波變換都會有一個mother wavelet,我們稱之為母小波,同時還有一個

          scaling function,中文是尺度函數(shù),也被成為父小波。任何小波變換的basis函數(shù),其實就是對這個母小波和父小波縮放和平移后的集合。下面這附圖就是某種小波的示意圖:




          從這里看出,這里的縮放倍數(shù)都是2的級數(shù),平移的大小和當(dāng)前其縮放的程度有關(guān)。這樣的好處是,小波的basis函數(shù)既有高頻又有低頻,同時還覆蓋了時域。對于這點,我們會在之后詳細闡述。


          小波展開的形式通常都是這樣(注意,這個只是近似表達):

          其中的ψj,k(t)就是小波級數(shù),這些級數(shù)的組合就形成了小波變換中的基basis。和傅立葉級數(shù)有一點不同的是,小波級數(shù)通常是orthonormal basis,也就是說,它們不僅兩兩正交,還歸一化了。小波級數(shù)通常有很多種,但是都符合下面這些特性:


          1. 小波變換對不管是一維還是高維的大部分信號都能cover很好。這個和傅立葉級數(shù)有很大區(qū)別。后者最擅長的是把一維的,類三角波連續(xù)變量函數(shù)信號映射到一維系數(shù)序列上,但對于突變信號或任何高維的非三角波信號則幾乎無能為力。


          2. 圍繞小波級數(shù)的展開能夠在時域和頻域上同時定位信號,也就是說,信號的大部分能量都能由非常少的展開系數(shù),比如a{j,k}決定。這個特性是得益于小波變換是二維變換。我們從兩者展開的表達式就可以看出來,傅立葉級數(shù)是ψi(t),而小波級ψj,k(t)。


          3.從信號算出展開系數(shù)a需要很方便。普遍情況下,小波變換的復(fù)雜度是O(Nlog(N)),和FFT相當(dāng)。有不少很快的變換甚至可以達到O(N),也就是說,計算復(fù)雜度和信號長度是線性的關(guān)系。小波變換的等式定義,可以沒有積分,沒有微分,僅僅是乘法和加法即可以做到,和現(xiàn)代計算機的計算指令完全match。


          可能看到這里,你會有點暈了。這些特性是怎么來的?為什么需要有這些特性?具體到實踐中,它們到底是怎么給小波變換帶來比別人更強的好處的?計算簡單這個可能好理解,因為前面我們已經(jīng)講過正交特性了。那么二維變換呢?頻域和時域定位是如何進行的呢?恩,我完全理解你的感受,因為當(dāng)初我看別的文章,也是有這些問題,就是看不到答案。要說想完全理解小波變換的這些本質(zhì),需要詳細的講解,所以我就把它放到下一篇了。


          接下來,上幾張圖,我們以一些基本的信號處理來呈現(xiàn)小波變換比傅立葉變換好的地方,我保證,你看了這個比較之后,大概能隱約感受到小波變換的強大,并對背后的原理充滿期待:)


          假設(shè)我們現(xiàn)在有這么一個信號:



          看到了吧,這個信號就是一個直流信號。我們用傅立葉將其展開,會發(fā)現(xiàn)形式非常簡單:只有一個級數(shù)系數(shù)不是0,其他所有級數(shù)系數(shù)都是0。我們再看這個信號:


          簡單說,就是在前一個直流信號上,增加了一個突變。其實這個突變,在時域中看來很簡單,前面還是很平滑的直流,后面也是很平滑的直流,就是中間有一個階躍嘛。但是,如果我們再次讓其傅立葉展開呢?所有的傅立葉級數(shù)都為非0了!為什么?因為傅立葉必須用三角波來展開信號,對于這種變換突然而劇烈的信號來講,即使只有一小段變換,傅立葉也不得不用大量的三角波去擬合,就像這樣:




          看看上面這個圖。學(xué)過基本的信號知識的朋友估計都能想到,這不就是Gibbs現(xiàn)象么?Exactly。用比較八股的說法來解釋,Gibbs現(xiàn)象是由于展開式在間斷點鄰域不能均勻收斂所引起的,即使在N趨于無窮大時,這一現(xiàn)象也依然存在。其實通俗一點解釋,就是當(dāng)變化太sharp的時候,三角波fit不過來了,就湊合出Gibbs了:)接下來我們來看看,如果用剛才舉例中的那種小波,展開之后是這樣的:




          看見了么?只要小波basis不和這個信號變化重疊,它所對應(yīng)的級數(shù)系數(shù)都為0!也就是說,假如我們就用這個三級小波對此信號展開,那么只有3個級數(shù)系數(shù)不為0。你可以使用更復(fù)雜的小波,不管什么小波,大部分級數(shù)系數(shù)都會是0。


          原因?由于小波basis的特殊性,任何小波和常量函數(shù)的內(nèi)積都趨近于0。換句話說,選小波的時候,就需要保證母小波在一個周期的積分趨近于0。正是這個有趣的性質(zhì),讓小波變換的計算以及對信號的詮釋比傅立葉變換更勝一籌!原因在于,小波變換允許更加精確的局部描述以及信號特征的分離。一個傅立葉系數(shù)通常表示某個貫穿整個時間域的信號分量,因此,即使是臨時的信號,其特征也被強扯到了整個時間周期去描述。而小波展開的系數(shù)則代表了對應(yīng)分量它當(dāng)下的自己,因此非常容易詮釋。


          小波變換的優(yōu)勢不僅僅在這里。事實上,對于傅立葉變換以及大部分的信號變換系統(tǒng),他們的函數(shù)基都是固定的,那么變換后的結(jié)果只能按部就班被分析推導(dǎo)出來,沒有任何靈活性,比如你如果決定使用傅立葉變換了,那basisfunction就是正弦波,你不管怎么scale,它都是正弦波,即使你舉出余弦波,它還是移相后的正弦波。


          總之你就只能用正弦波,沒有任何商量的余地。而對于小波變換來講,基是變的,是可以根據(jù)信號來推導(dǎo)或者構(gòu)建出來的,只要符合小波變換的性質(zhì)和特點即可。也就是說,如果你有著比較特殊的信號需要處理,你甚至可以構(gòu)建一個專門針對這種特殊信號的小波basisfunction集合對其進行分析。這種靈活性是任何別的變換都無法比擬的??偨Y(jié)來說,傅立葉變換適合周期性的,統(tǒng)計特性不隨時間變化的信號;而小波變換則適用于大部分信號,尤其是瞬時信號。它針對絕大部分信號的壓縮,去噪,檢測效果都特別好。


          本文內(nèi)容參考以上公眾號。以上內(nèi)容僅供學(xué)習(xí)使用,不作其它用途,如有侵權(quán),請留言聯(lián)系,作刪除處理!


          有任何疑問及建議,掃描以下公眾號二維碼添加交流:

          瀏覽 40
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  男女黄页网址 | 欧美大黄片 | 国产精品一色哟哟哟 | 亚洲高清视频免费 | 草逼综合网 |