小波變換通俗解釋
一、傅里葉變換

做完FFT(快速傅里葉變換)后,可以在頻譜上看到清晰的四條線,信號(hào)包含四個(gè)頻率成分。

如上圖,最上邊的是頻率始終不變的平穩(wěn)信號(hào)。而下邊兩個(gè)則是頻率隨著時(shí)間改變的非平穩(wěn)信號(hào),它們同樣包含和最上信號(hào)相同頻率的四個(gè)成分。做FFT后,我們發(fā)現(xiàn)這三個(gè)時(shí)域上有巨大差異的信號(hào),頻譜(幅值譜)卻非常一致。尤其是下邊兩個(gè)非平穩(wěn)信號(hào),我們從頻譜上無(wú)法區(qū)分它們,因?yàn)樗鼈儼乃膫€(gè)頻率的信號(hào)的成分確實(shí)是一樣的,只是出現(xiàn)的先后順序不同。

看圖:

時(shí)域上分成一段一段做FFT,不就知道頻率成分隨著時(shí)間的變化情況了嗎!

——此圖像來(lái)源于“THE WAVELET TUTORIAL”


窗太窄,窗內(nèi)的信號(hào)太短,會(huì)導(dǎo)致頻率分析不夠精準(zhǔn),頻率分辨率差。窗太寬,時(shí)域上又不夠精細(xì),時(shí)間分辨率低。
看看實(shí)例效果吧:



三、小波變換
【解釋】

這個(gè)基函數(shù)會(huì)伸縮、會(huì)平移(其實(shí)是兩個(gè)正交基的分解)??s得窄,對(duì)應(yīng)高頻;伸得寬,對(duì)應(yīng)低頻。然后這個(gè)基函數(shù)不斷和信號(hào)做相乘。某一個(gè)尺度(寬窄)下乘出來(lái)的結(jié)果,就可以理解成信號(hào)所包含的當(dāng)前尺度對(duì)應(yīng)頻率成分有多少。于是,基函數(shù)會(huì)在某些尺度下,與信號(hào)相乘得到一個(gè)很大的值,因?yàn)榇藭r(shí)二者有一種重合關(guān)系。那么我們就知道信號(hào)包含該頻率的成分的多少。


看,這兩種尺度能乘出一個(gè)大的值(相關(guān)度高),所以信號(hào)包含較多的這兩個(gè)頻率成分,在頻譜上這兩個(gè)頻率會(huì)出現(xiàn)兩個(gè)峰。

這就是為什么它叫“小波”,因?yàn)槭呛苄〉囊粋€(gè)波嘛~

從公式可以看出,不同于傅里葉變換,變量只有頻率ω,小波變換有兩個(gè)變量:尺度a(scale)和平移量 τ(translation)。尺度a控制小波函數(shù)的伸縮,平移量 τ控制小波函數(shù)的平移。尺度就對(duì)應(yīng)于頻率(反比),平移量 τ就對(duì)應(yīng)于時(shí)間。

當(dāng)伸縮、平移到這么一種重合情況時(shí),也會(huì)相乘得到一個(gè)大的值。這時(shí)候和傅里葉變換不同的是,這不僅可以知道信號(hào)有這樣頻率的成分,而且知道它在時(shí)域上存在的具體位置。
看到了嗎?有了小波,我們從此再也不害怕非穩(wěn)定信號(hào)啦!從此可以做時(shí)頻分析啦!
做傅里葉變換只能得到一個(gè)頻譜,做小波變換卻可以得到一個(gè)時(shí)頻譜!

↑:時(shí)域信號(hào)

↑:傅里葉變換結(jié)果

——此圖像來(lái)源于“THE WAVELET TUTORIAL”
小波還有一些好處:

然而衰減的小波就不一樣了:

以上,就是小波的意義。
2. WAVELETS:SEEING THE FOREST AND THE TREES
3. A Really Friendly Guide to Wavelets
4. Conceptual wavelets
但是真正理解透小波變換,這些還差得很遠(yuǎn)。比如你至少還要知道有一個(gè)“尺度函數(shù)”的存在,它是構(gòu)造“小波函數(shù)”的關(guān)鍵,并且是它和小波函數(shù)一起才構(gòu)成了小波多分辨率分析,理解了它才有可能利用小波做一些數(shù)字信號(hào)處理;你還要理解離散小波變換、正交小波變換、二維小波變換、小波包……這些內(nèi)容國(guó)內(nèi)教材上講得也很糟糕,大家就一點(diǎn)一點(diǎn)啃吧~


評(píng)論
圖片
表情
