基于機(jī)器視覺的典型多目標(biāo)追蹤算法應(yīng)用實(shí)踐
點(diǎn)擊上方“小白學(xué)視覺”,選擇加"星標(biāo)"或“置頂”
重磅干貨,第一時(shí)間送達(dá)
轉(zhuǎn)自:Deepexi滴普科技
視頻目標(biāo)追蹤算法是機(jī)器視覺中一項(xiàng)很實(shí)用重要的算法,視頻目標(biāo)追蹤算法應(yīng)用場景很廣,比如智能監(jiān)控、機(jī)器人視覺系統(tǒng)、虛擬現(xiàn)實(shí)(人體跟蹤)、醫(yī)學(xué)診斷(細(xì)胞狀態(tài)跟蹤)等。本文由滴普科技2048團(tuán)隊(duì)AI產(chǎn)品部算法工程師朱曉麗介紹基于機(jī)器視覺的典型多目標(biāo)追蹤算法應(yīng)用實(shí)踐。
? ?一、概 述?
MOT的分類
MOT常用評價(jià)標(biāo)準(zhǔn)

表1.?常用評價(jià)指標(biāo)
MOT的難點(diǎn)

圖1 MOT算法處理步驟
Sort(Simple nline and real time tracking)
Deep Sort(Deep simple online and realtime tracking)
FairMot(A simple baseline for multi-object tracking)
Graphnn Multi-object Trachking。(后面簡寫為Graphnn-mot)
二、典型的追蹤算法介紹??

圖2.?Deep Sort算法的簡單流程圖

圖3.?FairMot算法的簡單流程圖

圖4.?FairMot網(wǎng)絡(luò)結(jié)構(gòu)及檢測示意圖

圖5.?Graphnn-mot算法的處理流程
? ?三、實(shí)際算法測試分析????

表2.?追蹤算法實(shí)際測試的時(shí)間和精度(精度含義見表1)

組圖1:擁擠場景中的graphnn mot追蹤算法

組圖2:擁擠場景中的deep sort追蹤算法

組圖3:擁擠場景中的farimot追蹤算法

組圖4:graphnn追蹤算法目標(biāo)檢測漏檢示例圖
? ? 四、總結(jié)?
參考文獻(xiàn)
[1]?Multiple Object Tracking: A Literature Review. https://arxiv.org/abs/1409.7618
[2]?Deep Learning in Video Multi-Object Tracking: a Survey. https://arxiv.org/pdf/1907.12740.pdf
[3]?YOLOv4: Optimal Speed and Accuracy of Object Detection. https://arxiv.org/pdf/2004.10934v1.pdf
[4]?MobileNetV2: Inverted Residuals and Linear Bottlenecks. https://arxiv.org/abs/1704.04861
[5]?Deep Residual Learning for Image Recognition. https://arxiv.org/abs/1512.03385
[6] Deep Layer Aggregate. https://arxiv.org/pdf/1707.06484.pdf
[7]?Feature Pyramid Networks for Object Detection. https://arxiv.org/pdf/1612.03144.pdf
[8]?A Comprehensive Survey on Graph Neural Networks.?https://arxiv.org/abs/1901.00596
[9] Simple Online and Realtime Tracking with a Deep Association Metric.?https://arxiv.org/pdf/1703.07402.pdf
[10] FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking.https://arxiv.org/pdf/2004.01888.pdf
[11] Learning a Neural Solver for Multiple Object Tracking.?https://arxiv.org/pdf/1912.07515.pdf
[12] Towards Real-Time Multi-object tracking. ?https://arxiv.org/pdf/1909.12605v1.pdf
[13] Real-Time Multi People Tracking with Deeply Learned Candidate Selection and Person Re-Identification. ?https://arxiv.org/abs/1809.04427?
[14]?http://www.deepexi.com/
?
附錄
1. 測試條件與環(huán)境
環(huán)境配置:
ubuntu 20.04.4LTS 單卡GTX1060 CUDA Version 10.1.
python=3.8.3 opencv-python=4.3.0.36 pytorch=1.4 torchvision cudatoolkit=10.1.243
數(shù)據(jù)集:
public dataset: MOT2017-MOT2020 crowdhuman 用于detection模型訓(xùn)練和測試
CUHK03 Market1501 DukeMTMC-reID MSMT17用于reID模型訓(xùn)練??? ? ? ?
