SpringBoot2.x 官方推薦緩存框架-Caffeine高性能設(shè)計剖析

來源:http://r6d.cn/Q8wE
概要
Caffeine是一個高性能,高命中率,低內(nèi)存占用,near optimal 的本地緩存,簡單來說它是Guava Cache的優(yōu)化加強版,有些文章把Caffeine稱為“新一代的緩存”、“現(xiàn)代緩存之王”。本文將重點講解Caffeine的高性能設(shè)計,以及對應(yīng)部分的源碼分析。
與Guava Cache比較
如果你對Guava Cache還不理解的話,可以點擊這里來看一下我之前寫過關(guān)于Guava Cache的文章。
大家都知道,Spring5即將放棄掉Guava Cache作為緩存機制,而改用Caffeine作為新的本地Cache的組件,這對于Caffeine來說是一個很大的肯定。為什么Spring會這樣做呢?其實在Caffeine的Benchmarks里給出了好靚仔的數(shù)據(jù),對讀和寫的場景,還有跟其他幾個緩存工具進行了比較,Caffeine的性能都表現(xiàn)很突出。

使用Caffeine
Caffeine為了方便大家使用以及從Guava Cache切換過來(很有針對性啊~),借鑒了Guava Cache大部分的概念(諸如核心概念Cache、LoadingCache、CacheLoader、CacheBuilder等等),對于Caffeine的理解只要把它當作Guava Cache就可以了。
使用上,大家只要把Caffeine的包引進來,然后換一下cache的實現(xiàn)類,基本應(yīng)該就沒問題了。這對與已經(jīng)使用過Guava Cache的同學(xué)來說沒有任何難度,甚至還有一點熟悉的味道,如果你之前沒有使用過Guava Cache,可以查看Caffeine的官方API說明文檔,其中Population,Eviction,Removal,Refresh,Statistics,Cleanup,Policy等等這些特性都是跟Guava Cache基本一樣的。
下面給出一個例子說明怎樣創(chuàng)建一個Cache:
private?static?LoadingCache?cache?=?Caffeine.newBuilder()??
????????????//最大個數(shù)限制??
????????????.maximumSize(256L)??
????????????//初始化容量??
????????????.initialCapacity(1)??
????????????//訪問后過期(包括讀和寫)??
????????????.expireAfterAccess(2,?TimeUnit.DAYS)??
????????????//寫后過期??
????????????.expireAfterWrite(2,?TimeUnit.HOURS)??
????????????//寫后自動異步刷新??
????????????.refreshAfterWrite(1,?TimeUnit.HOURS)??
????????????//記錄下緩存的一些統(tǒng)計數(shù)據(jù),例如命中率等??
????????????.recordStats()??
????????????//cache對緩存寫的通知回調(diào)??
????????????.writer(new?CacheWriter Caffeine的高性能設(shè)計
判斷一個緩存的好壞最核心的指標就是命中率,影響緩存命中率有很多因素,包括業(yè)務(wù)場景、淘汰策略、清理策略、緩存容量等等。如果作為本地緩存, 它的性能的情況,資源的占用也都是一個很重要的指標。下面
我們來看看Caffeine在這幾個方面是怎么著手的,如何做優(yōu)化的。
(注:本文不會分析Caffeine全部源碼,只會對核心設(shè)計的實現(xiàn)進行分析,但我建議讀者把Caffeine的源碼都涉獵一下,有個overview才能更好理解本文。如果你看過Guava Cache的源碼也行,代碼的數(shù)據(jù)結(jié)構(gòu)和處理邏輯很類似的。源碼基于:caffeine-2.8.0.jar)
W-TinyLFU整體設(shè)計
上面說到淘汰策略是影響緩存命中率的因素之一,一般比較簡單的緩存就會直接用到LFU(Least Frequently Used,即最不經(jīng)常使用)或者LRU(Least Recently Used,即最近最少使用),而Caffeine就是使用了W-TinyLFU算法。
W-TinyLFU看名字就能大概猜出來,它是LFU的變種,也是一種緩存淘汰算法。那為什么要使用W-TinyLFU呢?
LRU和LFU的缺點
LRU實現(xiàn)簡單,在一般情況下能夠表現(xiàn)出很好的命中率,是一個“性價比”很高的算法,平時也很常用。雖然LRU對突發(fā)性的稀疏流量(sparse bursts)表現(xiàn)很好,但同時也會產(chǎn)生緩存污染,舉例來說,如果偶然性的要對全量數(shù)據(jù)進行遍歷,那么“歷史訪問記錄”就會被刷走,造成污染。
如果數(shù)據(jù)的分布在一段時間內(nèi)是固定的話,那么LFU可以達到最高的命中率。但是LFU有兩個缺點,第一,它需要給每個記錄項維護頻率信息,每次訪問都需要更新,這是個巨大的開銷;第二,對突發(fā)性的稀疏流量無力,因為前期經(jīng)常訪問的記錄已經(jīng)占用了緩存,偶然的流量不太可能會被保留下來,而且過去的一些大量被訪問的記錄在將來也不一定會使用上,這樣就一直把“坑”占著了。
無論LRU還是LFU都有其各自的缺點,不過,現(xiàn)在已經(jīng)有很多針對其缺點而改良、優(yōu)化出來的變種算法。
TinyLFU
TinyLFU就是其中一個優(yōu)化算法,它是專門為了解決LFU上述提到的兩個問題而被設(shè)計出來的。
解決第一個問題是采用了Count–Min Sketch算法。
解決第二個問題是讓記錄盡量保持相對的“新鮮”(Freshness Mechanism),并且當有新的記錄插入時,可以讓它跟老的記錄進行“PK”,輸者就會被淘汰,這樣一些老的、不再需要的記錄就會被剔除。
下圖是TinyLFU設(shè)計圖(來自官方)

統(tǒng)計頻率Count–Min Sketch算法
如何對一個key進行統(tǒng)計,但又可以節(jié)省空間呢?(不是簡單的使用HashMap,這太消耗內(nèi)存了),注意哦,不需要精確的統(tǒng)計,只需要一個近似值就可以了,怎么樣,這樣場景是不是很熟悉,如果你是老司機,或許已經(jīng)聯(lián)想到布隆過濾器(Bloom Filter)的應(yīng)用了。
沒錯,將要介紹的Count–Min Sketch的原理跟Bloom Filter一樣,只不過Bloom Filter只有0和1的值,那么你可以把Count–Min Sketch看作是“數(shù)值”版的Bloom Filter。
更多關(guān)于Count–Min Sketch的介紹請自行搜索。
在TinyLFU中,近似頻率的統(tǒng)計如下圖所示:

對一個key進行多次hash函數(shù)后,index到多個數(shù)組位置后進行累加,查詢時取多個值中的最小值即可。
Caffeine對這個算法的實現(xiàn)在FrequencySketch類。但Caffeine對此有進一步的優(yōu)化,例如Count–Min Sketch使用了二維數(shù)組,Caffeine只是用了一個一維的數(shù)組;再者,如果是數(shù)值類型的話,這個數(shù)需要用int或long來存儲,但是Caffeine認為緩存的訪問頻率不需要用到那么大,只需要15就足夠,一般認為達到15次的頻率算是很高的了,而且Caffeine還有另外一個機制來使得這個頻率進行衰退減半(下面就會講到)。如果最大是15的話,那么只需要4個bit就可以滿足了,一個long有64bit,可以存儲16個這樣的統(tǒng)計數(shù),Caffeine就是這樣的設(shè)計,使得存儲效率提高了16倍。
Caffeine對緩存的讀寫(afterRead和afterWrite方法)都會調(diào)用onAccesss方法,而onAccess方法里有一句:
frequencySketch().increment(key);??
這句就是追加記錄的頻率,下面我們看看具體實現(xiàn)
//FrequencySketch的一些屬性??
??
//種子數(shù)??
static?final?long[]?SEED?=?{?//?A?mixture?of?seeds?from?FNV-1a,?CityHash,?and?Murmur3??
????0xc3a5c85c97cb3127L,?0xb492b66fbe98f273L,?0x9ae16a3b2f90404fL,?0xcbf29ce484222325L};??
static?final?long?RESET_MASK?=?0x7777777777777777L;??
static?final?long?ONE_MASK?=?0x1111111111111111L;??
??
int?sampleSize;??
//為了快速根據(jù)hash值得到table的index值的掩碼??
//table的長度size一般為2的n次方,而tableMask為size-1,這樣就可以通過&操作來模擬取余操作,速度快很多,老司機都知道??
int?tableMask;??
//存儲數(shù)據(jù)的一維long數(shù)組??
long[]?table;??
int?size;??
??
/**??
?*?Increments?the?popularity?of?the?element?if?it?does?not?exceed?the?maximum?(15).?The?popularity??
?*?of?all?elements?will?be?periodically?down?sampled?when?the?observed?events?exceeds?a?threshold.??
?*?This?process?provides?a?frequency?aging?to?allow?expired?long?term?entries?to?fade?away.??
?*??
?*?@param?e?the?element?to?add??
?*/??
public?void?increment(@NonNull?E?e)?{??
??if?(isNotInitialized())?{??
????return;??
??}??
??
??//根據(jù)key的hashCode通過一個哈希函數(shù)得到一個hash值??
??//本來就是hashCode了,為什么還要再做一次hash?怕原來的hashCode不夠均勻分散,再打散一下。??
??int?hash?=?spread(e.hashCode());??
??//這句光看有點難理解??
??//就如我剛才說的,Caffeine把一個long的64bit劃分成16個等分,每一等分4個bit。??
??//這個start就是用來定位到是哪一個等分的,用hash值低兩位作為隨機數(shù),再左移2位,得到一個小于16的值??
??int?start?=?(hash?&?3)?<2;??
??
??//indexOf方法的意思就是,根據(jù)hash值和不同種子得到table的下標index??
??//這里通過四個不同的種子,得到四個不同的下標index??
??int?index0?=?indexOf(hash,?0);??
??int?index1?=?indexOf(hash,?1);??
??int?index2?=?indexOf(hash,?2);??
??int?index3?=?indexOf(hash,?3);??
??
??//根據(jù)index和start(+1,?+2,?+3)的值,把table[index]對應(yīng)的等分追加1??
??//這個incrementAt方法有點難理解,看我下面的解釋??
??boolean?added?=?incrementAt(index0,?start);??
??added?|=?incrementAt(index1,?start?+?1);??
??added?|=?incrementAt(index2,?start?+?2);??
??added?|=?incrementAt(index3,?start?+?3);??
??
??//這個reset等下說??
??if?(added?&&?(++size?==?sampleSize))?{??
????reset();??
??}??
}??
??
/**??
?*?Increments?the?specified?counter?by?1?if?it?is?not?already?at?the?maximum?value?(15).??
?*??
?*?@param?i?the?table?index?(16?counters)??
?*?@param?j?the?counter?to?increment??
?*?@return?if?incremented??
?*/??
boolean?incrementAt(int?i,?int?j)?{??
??//這個j表示16個等分的下標,那么offset就是相當于在64位中的下標(這個自己想想)??
??int?offset?=?j?<2;??
??//上面提到Caffeine把頻率統(tǒng)計最大定為15,即0xfL??
??//mask就是在64位中的掩碼,即1111后面跟很多個0??
??long?mask?=?(0xfL?<??//如果&的結(jié)果不等于15,那么就追加1。等于15就不會再加了??
??if?((table[i]?&?mask)?!=?mask)?{??
????table[i]?+=?(1L?<????return?true;??
??}??
??return?false;??
}??
??
/**??
?*?Returns?the?table?index?for?the?counter?at?the?specified?depth.??
?*??
?*?@param?item?the?element's?hash??
?*?@param?i?the?counter?depth??
?*?@return?the?table?index??
?*/??
int?indexOf(int?item,?int?i)?{??
??long?hash?=?SEED[i]?*?item;??
??hash?+=?hash?>>>?32;??
??return?((int)?hash)?&?tableMask;??
}??
??
/**??
?*?Applies?a?supplemental?hash?function?to?a?given?hashCode,?which?defends?against?poor?quality??
?*?hash?functions.??
?*/??
int?spread(int?x)?{??
??x?=?((x?>>>?16)?^?x)?*?0x45d9f3b;??
??x?=?((x?>>>?16)?^?x)?*?0x45d9f3b;??
??return?(x?>>>?16)?^?x;??
}??
知道了追加方法,那么讀取方法frequency就很容易理解了。
/**??
?*?Returns?the?estimated?number?of?occurrences?of?an?element,?up?to?the?maximum?(15).??
?*??
?*?@param?e?the?element?to?count?occurrences?of??
?*?@return?the?estimated?number?of?occurrences?of?the?element;?possibly?zero?but?never?negative??
?*/??
@NonNegative??
public?int?frequency(@NonNull?E?e)?{??
??if?(isNotInitialized())?{??
????return?0;??
??}??
??
??//得到hash值,跟上面一樣??
??int?hash?=?spread(e.hashCode());??
??//得到等分的下標,跟上面一樣??
??int?start?=?(hash?&?3)?<2;??
??int?frequency?=?Integer.MAX_VALUE;??
??//循環(huán)四次,分別獲取在table數(shù)組中不同的下標位置??
??for?(int?i?=?0;?i?4;?i++)?{??
????int?index?=?indexOf(hash,?i);??
????//這個操作就不多說了,其實跟上面incrementAt是一樣的,定位到table[index]?+?等分的位置,再根據(jù)mask取出計數(shù)值??
????int?count?=?(int)?((table[index]?>>>?((start?+?i)?<2))?&?0xfL);??
????//取四個中的較小值??
????frequency?=?Math.min(frequency,?count);??
??}??
??return?frequency;??
}??
通過代碼和注釋或者讀者可能難以理解,下圖是我畫出來幫助大家理解的結(jié)構(gòu)圖。
注意紫色虛線框,其中藍色小格就是需要計算的位置:

保新機制
為了讓緩存保持“新鮮”,剔除掉過往頻率很高但之后不經(jīng)常的緩存,Caffeine有一個Freshness Mechanism。做法很簡答,就是當整體的統(tǒng)計計數(shù)(當前所有記錄的頻率統(tǒng)計之和,這個數(shù)值內(nèi)部維護)達到某一個值時,那么所有記錄的頻率統(tǒng)計除以2。
從上面的代碼
//size變量就是所有記錄的頻率統(tǒng)計之,即每個記錄加1,這個size都會加1??
//sampleSize一個閾值,從FrequencySketch初始化可以看到它的值為maximumSize的10倍??
if?(added?&&?(++size?==?sampleSize))?{??
??????reset();??
}??
看到reset方法就是做這個事情
/**?Reduces?every?counter?by?half?of?its?original?value.?*/??
void?reset()?{??
??int?count?=?0;??
??for?(int?i?=?0;?i?????count?+=?Long.bitCount(table[i]?&?ONE_MASK);??
????table[i]?=?(table[i]?>>>?1)?&?RESET_MASK;??
??}??
??size?=?(size?>>>?1)?-?(count?>>>?2);??
}??
關(guān)于這個reset方法,為什么是除以2,而不是其他,及其正確性,在最下面的參考資料的TinyLFU論文中3.3章節(jié)給出了數(shù)學(xué)證明,大家有興趣可以看看。
增加一個Window?
Caffeine通過測試發(fā)現(xiàn)TinyLFU在面對突發(fā)性的稀疏流量(sparse bursts)時表現(xiàn)很差,因為新的記錄(new items)還沒來得及建立足夠的頻率就被剔除出去了,這就使得命中率下降。
于是Caffeine設(shè)計出一種新的policy,即Window Tiny LFU(W-TinyLFU),并通過實驗和實踐發(fā)現(xiàn)W-TinyLFU比TinyLFU表現(xiàn)的更好。
W-TinyLFU的設(shè)計如下所示(兩圖等價):


它主要包括兩個緩存模塊,主緩存是SLRU(Segmented LRU,即分段LRU),SLRU包括一個名為protected和一個名為probation的緩存區(qū)。通過增加一個緩存區(qū)(即Window Cache),當有新的記錄插入時,會先在window區(qū)呆一下,就可以避免上述說的sparse bursts問題。
淘汰策略(eviction policy)
當window區(qū)滿了,就會根據(jù)LRU把candidate(即淘汰出來的元素)放到probation區(qū),如果probation區(qū)也滿了,就把candidate和probation將要淘汰的元素victim,兩個進行“PK”,勝者留在probation,輸者就要被淘汰了。
而且經(jīng)過實驗發(fā)現(xiàn)當window區(qū)配置為總?cè)萘康?%,剩余的99%當中的80%分給protected區(qū),20%分給probation區(qū)時,這時整體性能和命中率表現(xiàn)得最好,所以Caffeine默認的比例設(shè)置就是這個。
不過這個比例Caffeine會在運行時根據(jù)統(tǒng)計數(shù)據(jù)(statistics)去動態(tài)調(diào)整,如果你的應(yīng)用程序的緩存隨著時間變化比較快的話,那么增加window區(qū)的比例可以提高命中率,相反緩存都是比較固定不變的話,增加Main Cache區(qū)(protected區(qū) +probation區(qū))的比例會有較好的效果。
下面我們看看上面說到的淘汰策略是怎么實現(xiàn)的:
一般緩存對讀寫操作后都有后續(xù)的一系列“維護”操作,Caffeine也不例外,這些操作都在maintenance方法,我們將要說到的淘汰策略也在里面。
這方法比較重要,下面也會提到,所以這里只先說跟“淘汰策略”有關(guān)的evictEntries和climb。
/**??
???*?Performs?the?pending?maintenance?work?and?sets?the?state?flags?during?processing?to?avoid??
???*?excess?scheduling?attempts.?The?read?buffer,?write?buffer,?and?reference?queues?are??
???*?drained,?followed?by?expiration,?and?size-based?eviction.??
???*??
???*?@param?task?an?additional?pending?task?to?run,?or?{@code?null}?if?not?present??
???*/??
??@GuardedBy("evictionLock")??
??void?maintenance(@Nullable?Runnable?task)?{??
????lazySetDrainStatus(PROCESSING_TO_IDLE);??
??
????try?{??
??????drainReadBuffer();??
??
??????drainWriteBuffer();??
??????if?(task?!=?null)?{??
????????task.run();??
??????}??
??
??????drainKeyReferences();??
??????drainValueReferences();??
??
??????expireEntries();??
??????//把符合條件的記錄淘汰掉??
??????evictEntries();??
??????//動態(tài)調(diào)整window區(qū)和protected區(qū)的大小??
??????climb();??
????}?finally?{??
??????if?((drainStatus()?!=?PROCESSING_TO_IDLE)?||?!casDrainStatus(PROCESSING_TO_IDLE,?IDLE))?{??
????????lazySetDrainStatus(REQUIRED);??
??????}??
????}??
??}??
先說一下Caffeine對上面說到的W-TinyLFU策略的實現(xiàn)用到的數(shù)據(jù)結(jié)構(gòu):
//最大的個數(shù)限制??
long?maximum;??
//當前的個數(shù)??
long?weightedSize;??
//window區(qū)的最大限制??
long?windowMaximum;??
//window區(qū)當前的個數(shù)??
long?windowWeightedSize;??
//protected區(qū)的最大限制??
long?mainProtectedMaximum;??
//protected區(qū)當前的個數(shù)??
long?mainProtectedWeightedSize;??
//下一次需要調(diào)整的大小(還需要進一步計算)??
double?stepSize;??
//window區(qū)需要調(diào)整的大小??
long?adjustment;??
//命中計數(shù)??
int?hitsInSample;??
//不命中的計數(shù)??
int?missesInSample;??
//上一次的緩存命中率??
double?previousSampleHitRate;??
??
final?FrequencySketch?sketch;??
//window區(qū)的LRU?queue(FIFO)??
final?AccessOrderDeque>?accessOrderWindowDeque;??
//probation區(qū)的LRU?queue(FIFO)??
final?AccessOrderDeque>?accessOrderProbationDeque;??
//protected區(qū)的LRU?queue(FIFO)??
final?AccessOrderDeque>?accessOrderProtectedDeque;??
以及默認比例設(shè)置(意思看注釋)
/**?The?initial?percent?of?the?maximum?weighted?capacity?dedicated?to?the?main?space.?*/??
static?final?double?PERCENT_MAIN?=?0.99d;??
/**?The?percent?of?the?maximum?weighted?capacity?dedicated?to?the?main's?protected?space.?*/??
static?final?double?PERCENT_MAIN_PROTECTED?=?0.80d;??
/**?The?difference?in?hit?rates?that?restarts?the?climber.?*/??
static?final?double?HILL_CLIMBER_RESTART_THRESHOLD?=?0.05d;??
/**?The?percent?of?the?total?size?to?adapt?the?window?by.?*/??
static?final?double?HILL_CLIMBER_STEP_PERCENT?=?0.0625d;??
/**?The?rate?to?decrease?the?step?size?to?adapt?by.?*/??
static?final?double?HILL_CLIMBER_STEP_DECAY_RATE?=?0.98d;??
/**?The?maximum?number?of?entries?that?can?be?transfered?between?queues.?*/??
重點來了,evictEntries和climb方法:
/**?Evicts?entries?if?the?cache?exceeds?the?maximum.?*/??
@GuardedBy("evictionLock")??
void?evictEntries()?{??
??if?(!evicts())?{??
????return;??
??}??
??//淘汰window區(qū)的記錄??
??int?candidates?=?evictFromWindow();??
??//淘汰Main區(qū)的記錄??
??evictFromMain(candidates);??
}??
??
/**??
?*?Evicts?entries?from?the?window?space?into?the?main?space?while?the?window?size?exceeds?a??
?*?maximum.??
?*??
?*?@return?the?number?of?candidate?entries?evicted?from?the?window?space??
?*/??
//根據(jù)W-TinyLFU,新的數(shù)據(jù)都會無條件的加到admission?window??
//但是window是有大小限制,所以要“定期”做一下“維護”??
@GuardedBy("evictionLock")??
int?evictFromWindow()?{??
??int?candidates?=?0;??
??//查看window?queue的頭部節(jié)點??
??Node?node?=?accessOrderWindowDeque().peek();??
??//如果window區(qū)超過了最大的限制,那么就要把“多出來”的記錄做處理??
??while?(windowWeightedSize()?>?windowMaximum())?{??
????//?The?pending?operations?will?adjust?the?size?to?reflect?the?correct?weight??
????if?(node?==?null)?{??
??????break;??
????}??
????//下一個節(jié)點??
????Node?next?=?node.getNextInAccessOrder();??
????if?(node.getWeight()?!=?0)?{??
??????//把node定位在probation區(qū)??
??????node.makeMainProbation();??
??????//從window區(qū)去掉??
??????accessOrderWindowDeque().remove(node);??
??????//加入到probation?queue,相當于把節(jié)點移動到probation區(qū)(晉升了)??
??????accessOrderProbationDeque().add(node);??
??????candidates++;??
??????//因為移除了一個節(jié)點,所以需要調(diào)整window的size??
??????setWindowWeightedSize(windowWeightedSize()?-?node.getPolicyWeight());??
????}??
????//處理下一個節(jié)點??
????node?=?next;??
??}??
??
??return?candidates;??
}??
evictFromMain方法:
/**??
?*?Evicts?entries?from?the?main?space?if?the?cache?exceeds?the?maximum?capacity.?The?main?space??
?*?determines?whether?admitting?an?entry?(coming?from?the?window?space)?is?preferable?to?retaining??
?*?the?eviction?policy's?victim.?This?is?decision?is?made?using?a?frequency?filter?so?that?the??
?*?least?frequently?used?entry?is?removed.??
?*??
?*?The?window?space?candidates?were?previously?placed?in?the?MRU?position?and?the?eviction??
?*?policy's?victim?is?at?the?LRU?position.?The?two?ends?of?the?queue?are?evaluated?while?an??
?*?eviction?is?required.?The?number?of?remaining?candidates?is?provided?and?decremented?on??
?*?eviction,?so?that?when?there?are?no?more?candidates?the?victim?is?evicted.??
?*??
?*?@param?candidates?the?number?of?candidate?entries?evicted?from?the?window?space??
?*/??
//根據(jù)W-TinyLFU,從window晉升過來的要跟probation區(qū)的進行“PK”,勝者才能留下??
@GuardedBy("evictionLock")??
void?evictFromMain(int?candidates)?{??
??int?victimQueue?=?PROBATION;??
??//victim是probation?queue的頭部??
??Node?victim?=?accessOrderProbationDeque().peekFirst();??
??//candidate是probation?queue的尾部,也就是剛從window晉升來的??
??Node?candidate?=?accessOrderProbationDeque().peekLast();??
??//當cache不夠容量時才做處理??
??while?(weightedSize()?>?maximum())?{??
????//?Stop?trying?to?evict?candidates?and?always?prefer?the?victim??
????if?(candidates?==?0)?{??
??????candidate?=?null;??
????}??
??
????//對candidate為null且victim為bull的處理??
????if?((candidate?==?null)?&&?(victim?==?null))?{??
??????if?(victimQueue?==?PROBATION)?{??
????????victim?=?accessOrderProtectedDeque().peekFirst();??
????????victimQueue?=?PROTECTED;??
????????continue;??
??????}?else?if?(victimQueue?==?PROTECTED)?{??
????????victim?=?accessOrderWindowDeque().peekFirst();??
????????victimQueue?=?WINDOW;??
????????continue;??
??????}??
??
??????//?The?pending?operations?will?adjust?the?size?to?reflect?the?correct?weight??
??????break;??
????}??
??
????//對節(jié)點的weight為0的處理??
????if?((victim?!=?null)?&&?(victim.getPolicyWeight()?==?0))?{??
??????victim?=?victim.getNextInAccessOrder();??
??????continue;??
????}?else?if?((candidate?!=?null)?&&?(candidate.getPolicyWeight()?==?0))?{??
??????candidate?=?candidate.getPreviousInAccessOrder();??
??????candidates--;??
??????continue;??
????}??
??
????//?Evict?immediately?if?only?one?of?the?entries?is?present??
????if?(victim?==?null)?{??
??????@SuppressWarnings("NullAway")??
??????Node?previous?=?candidate.getPreviousInAccessOrder();??
??????Node?evict?=?candidate;??
??????candidate?=?previous;??
??????candidates--;??
??????evictEntry(evict,?RemovalCause.SIZE,?0L);??
??????continue;??
????}?else?if?(candidate?==?null)?{??
??????Node?evict?=?victim;??
??????victim?=?victim.getNextInAccessOrder();??
??????evictEntry(evict,?RemovalCause.SIZE,?0L);??
??????continue;??
????}??
??
????//?Evict?immediately?if?an?entry?was?collected??
????K?victimKey?=?victim.getKey();??
????K?candidateKey?=?candidate.getKey();??
????if?(victimKey?==?null)?{??
??????@NonNull?Node?evict?=?victim;??
??????victim?=?victim.getNextInAccessOrder();??
??????evictEntry(evict,?RemovalCause.COLLECTED,?0L);??
??????continue;??
????}?else?if?(candidateKey?==?null)?{??
??????candidates--;??
??????@NonNull?Node?evict?=?candidate;??
??????candidate?=?candidate.getPreviousInAccessOrder();??
??????evictEntry(evict,?RemovalCause.COLLECTED,?0L);??
??????continue;??
????}??
??
????//放不下的節(jié)點直接處理掉??
????if?(candidate.getPolicyWeight()?>?maximum())?{??
??????candidates--;??
??????Node?evict?=?candidate;??
??????candidate?=?candidate.getPreviousInAccessOrder();??
??????evictEntry(evict,?RemovalCause.SIZE,?0L);??
??????continue;??
????}??
??
????//根據(jù)節(jié)點的統(tǒng)計頻率frequency來做比較,看看要處理掉victim還是candidate??
????//admit是具體的比較規(guī)則,看下面??
????candidates--;??
????//如果candidate勝出則淘汰victim??
????if?(admit(candidateKey,?victimKey))?{??
??????Node?evict?=?victim;??
??????victim?=?victim.getNextInAccessOrder();??
??????evictEntry(evict,?RemovalCause.SIZE,?0L);??
??????candidate?=?candidate.getPreviousInAccessOrder();??
????}?else?{??
??????//如果是victim勝出,則淘汰candidate??
??????Node?evict?=?candidate;??
??????candidate?=?candidate.getPreviousInAccessOrder();??
??????evictEntry(evict,?RemovalCause.SIZE,?0L);??
????}??
??}??
}??
??
/**??
?*?Determines?if?the?candidate?should?be?accepted?into?the?main?space,?as?determined?by?its??
?*?frequency?relative?to?the?victim.?A?small?amount?of?randomness?is?used?to?protect?against?hash??
?*?collision?attacks,?where?the?victim's?frequency?is?artificially?raised?so?that?no?new?entries??
?*?are?admitted.??
?*??
?*?@param?candidateKey?the?key?for?the?entry?being?proposed?for?long?term?retention??
?*?@param?victimKey?the?key?for?the?entry?chosen?by?the?eviction?policy?for?replacement??
?*?@return?if?the?candidate?should?be?admitted?and?the?victim?ejected??
?*/??
@GuardedBy("evictionLock")??
boolean?admit(K?candidateKey,?K?victimKey)?{??
??//分別獲取victim和candidate的統(tǒng)計頻率??
??//frequency這個方法的原理和實現(xiàn)上面已經(jīng)解釋了??
??int?victimFreq?=?frequencySketch().frequency(victimKey);??
??int?candidateFreq?=?frequencySketch().frequency(candidateKey);??
??//誰大誰贏??
??if?(candidateFreq?>?victimFreq)?{??
????return?true;??
??????
????//如果相等,candidate小于5都當輸了??
??}?else?if?(candidateFreq?<=?5)?{??
????//?The?maximum?frequency?is?15?and?halved?to?7?after?a?reset?to?age?the?history.?An?attack??
????//?exploits?that?a?hot?candidate?is?rejected?in?favor?of?a?hot?victim.?The?threshold?of?a?warm??
????//?candidate?reduces?the?number?of?random?acceptances?to?minimize?the?impact?on?the?hit?rate.??
????return?false;??
??}??
??//如果相等且candidate大于5,則隨機淘汰一個??
??int?random?=?ThreadLocalRandom.current().nextInt();??
??return?((random?&?127)?==?0);??
}??
climb方法主要是用來調(diào)整window size的,使得Caffeine可以適應(yīng)你的應(yīng)用類型(如OLAP或OLTP)表現(xiàn)出最佳的命中率。
下圖是官方測試的數(shù)據(jù):

我們看看window size的調(diào)整是怎么實現(xiàn)的。
調(diào)整時用到的默認比例數(shù)據(jù):
//與上次命中率之差的閾值??
static?final?double?HILL_CLIMBER_RESTART_THRESHOLD?=?0.05d;??
//步長(調(diào)整)的大小(跟最大值maximum的比例)??
static?final?double?HILL_CLIMBER_STEP_PERCENT?=?0.0625d;??
//步長的衰減比例??
static?final?double?HILL_CLIMBER_STEP_DECAY_RATE?=?0.98d;??
??/**?Adapts?the?eviction?policy?to?towards?the?optimal?recency?/?frequency?configuration.?*/??
//climb方法的主要作用就是動態(tài)調(diào)整window區(qū)的大小(相應(yīng)的,main區(qū)的大小也會發(fā)生變化,兩個之和為100%)。??
//因為區(qū)域的大小發(fā)生了變化,那么區(qū)域內(nèi)的數(shù)據(jù)也可能需要發(fā)生相應(yīng)的移動。??
@GuardedBy("evictionLock")??
void?climb()?{??
??if?(!evicts())?{??
????return;??
??}??
??//確定window需要調(diào)整的大小??
??determineAdjustment();??
??//如果protected區(qū)有溢出,把溢出部分移動到probation區(qū)。因為下面的操作有可能需要調(diào)整到protected區(qū)。??
??demoteFromMainProtected();??
??long?amount?=?adjustment();??
??if?(amount?==?0)?{??
????return;??
??}?else?if?(amount?>?0)?{??
????//增加window的大小??
????increaseWindow();??
??}?else?{??
????//減少window的大小??
????decreaseWindow();??
??}??
}??
下面分別展開每個方法來解釋:
/**?Calculates?the?amount?to?adapt?the?window?by?and?sets?{@link?#adjustment()}?accordingly.?*/??
@GuardedBy("evictionLock")??
void?determineAdjustment()?{??
??//如果frequencySketch還沒初始化,則返回??
??if?(frequencySketch().isNotInitialized())?{??
????setPreviousSampleHitRate(0.0);??
????setMissesInSample(0);??
????setHitsInSample(0);??
????return;??
??}??
??//總請求量?=?命中?+?miss??
??int?requestCount?=?hitsInSample()?+?missesInSample();??
??//沒達到sampleSize則返回??
??//默認下sampleSize = 10?* maximum。用sampleSize來判斷緩存是否足夠”熱“。??
??if?(requestCount?????return;??
??}??
????
??//命中率的公式?=?命中?/?總請求??
??double?hitRate?=?(double)?hitsInSample()?/?requestCount;??
??//命中率的差值??
??double?hitRateChange?=?hitRate?-?previousSampleHitRate();??
??//本次調(diào)整的大小,是由命中率的差值和上次的stepSize決定的??
??double?amount?=?(hitRateChange?>=?0)???stepSize()?:?-stepSize();??
??//下次的調(diào)整大小:如果命中率的之差大于0.05,則重置為0.065 * maximum,否則按照0.98來進行衰減??
??double?nextStepSize?=?(Math.abs(hitRateChange)?>=?HILL_CLIMBER_RESTART_THRESHOLD)??
????????HILL_CLIMBER_STEP_PERCENT?*?maximum()?*?(amount?>=?0???1?:?-1)??
??????:?HILL_CLIMBER_STEP_DECAY_RATE?*?amount;??
??setPreviousSampleHitRate(hitRate);??
??setAdjustment((long)?amount);??
??setStepSize(nextStepSize);??
??setMissesInSample(0);??
??setHitsInSample(0);??
}??
??
/**?Transfers?the?nodes?from?the?protected?to?the?probation?region?if?it?exceeds?the?maximum.?*/??
??
//這個方法比較簡單,減少protected區(qū)溢出的部分??
@GuardedBy("evictionLock")??
void?demoteFromMainProtected()?{??
??long?mainProtectedMaximum?=?mainProtectedMaximum();??
??long?mainProtectedWeightedSize?=?mainProtectedWeightedSize();??
??if?(mainProtectedWeightedSize?<=?mainProtectedMaximum)?{??
????return;??
??}??
??
??for?(int?i?=?0;?i?????if?(mainProtectedWeightedSize?<=?mainProtectedMaximum)?{??
??????break;??
????}??
??
????Node?demoted?=?accessOrderProtectedDeque().poll();??
????if?(demoted?==?null)?{??
??????break;??
????}??
????demoted.makeMainProbation();??
????accessOrderProbationDeque().add(demoted);??
????mainProtectedWeightedSize?-=?demoted.getPolicyWeight();??
??}??
??setMainProtectedWeightedSize(mainProtectedWeightedSize);??
}??
??
/**??
?*?Increases?the?size?of?the?admission?window?by?shrinking?the?portion?allocated?to?the?main??
?*?space.?As?the?main?space?is?partitioned?into?probation?and?protected?regions?(80%?/?20%),?for??
?*?simplicity?only?the?protected?is?reduced.?If?the?regions?exceed?their?maximums,?this?may?cause??
?*?protected?items?to?be?demoted?to?the?probation?region?and?probation?items?to?be?demoted?to?the??
?*?admission?window.??
?*/??
??
//增加window區(qū)的大小,這個方法比較簡單,思路就像我上面說的??
@GuardedBy("evictionLock")??
void?increaseWindow()?{??
??if?(mainProtectedMaximum()?==?0)?{??
????return;??
??}??
??
??long?quota?=?Math.min(adjustment(),?mainProtectedMaximum());??
??setMainProtectedMaximum(mainProtectedMaximum()?-?quota);??
??setWindowMaximum(windowMaximum()?+?quota);??
??demoteFromMainProtected();??
??
??for?(int?i?=?0;?i?????Node?candidate?=?accessOrderProbationDeque().peek();??
????boolean?probation?=?true;??
????if?((candidate?==?null)?||?(quota???????candidate?=?accessOrderProtectedDeque().peek();??
??????probation?=?false;??
????}??
????if?(candidate?==?null)?{??
??????break;??
????}??
??
????int?weight?=?candidate.getPolicyWeight();??
????if?(quota???????break;??
????}??
??
????quota?-=?weight;??
????if?(probation)?{??
??????accessOrderProbationDeque().remove(candidate);??
????}?else?{??
??????setMainProtectedWeightedSize(mainProtectedWeightedSize()?-?weight);??
??????accessOrderProtectedDeque().remove(candidate);??
????}??
????setWindowWeightedSize(windowWeightedSize()?+?weight);??
????accessOrderWindowDeque().add(candidate);??
????candidate.makeWindow();??
??}??
??
??setMainProtectedMaximum(mainProtectedMaximum()?+?quota);??
??setWindowMaximum(windowMaximum()?-?quota);??
??setAdjustment(quota);??
}??
??
/**?Decreases?the?size?of?the?admission?window?and?increases?the?main's?protected?region.?*/??
//同上increaseWindow差不多,反操作??
@GuardedBy("evictionLock")??
void?decreaseWindow()?{??
??if?(windowMaximum()?<=?1)?{??
????return;??
??}??
??
??long?quota?=?Math.min(-adjustment(),?Math.max(0,?windowMaximum()?-?1));??
??setMainProtectedMaximum(mainProtectedMaximum()?+?quota);??
??setWindowMaximum(windowMaximum()?-?quota);??
??
??for?(int?i?=?0;?i?????Node?candidate?=?accessOrderWindowDeque().peek();??
????if?(candidate?==?null)?{??
??????break;??
????}??
??
????int?weight?=?candidate.getPolicyWeight();??
????if?(quota???????break;??
????}??
??
????quota?-=?weight;??
????setMainProtectedWeightedSize(mainProtectedWeightedSize()?+?weight);??
????setWindowWeightedSize(windowWeightedSize()?-?weight);??
????accessOrderWindowDeque().remove(candidate);??
????accessOrderProbationDeque().add(candidate);??
????candidate.makeMainProbation();??
??}??
??
??setMainProtectedMaximum(mainProtectedMaximum()?-?quota);??
??setWindowMaximum(windowMaximum()?+?quota);??
??setAdjustment(-quota);??
}??
以上,是Caffeine的W-TinyLFU策略的設(shè)計原理及代碼實現(xiàn)解析。
異步的高性能讀寫
一般的緩存每次對數(shù)據(jù)處理完之后(讀的話,已經(jīng)存在則直接返回,不存在則load數(shù)據(jù),保存,再返回;寫的話,則直接插入或更新),但是因為要維護一些淘汰策略,則需要一些額外的操作,諸如:
計算和比較數(shù)據(jù)的是否過期
統(tǒng)計頻率(像LFU或其變種)
維護read queue和write queue
淘汰符合條件的數(shù)據(jù)
等等。。。
這種數(shù)據(jù)的讀寫伴隨著緩存狀態(tài)的變更,Guava Cache的做法是把這些操作和讀寫操作放在一起,在一個同步加鎖的操作中完成,雖然Guava Cache巧妙地利用了JDK的ConcurrentHashMap(分段鎖或者無鎖CAS)來降低鎖的密度,達到提高并發(fā)度的目的。但是,對于一些熱點數(shù)據(jù),這種做法還是避免不了頻繁的鎖競爭。Caffeine借鑒了數(shù)據(jù)庫系統(tǒng)的WAL(Write-Ahead Logging)思想,即先寫日志再執(zhí)行操作,這種思想同樣適合緩存的,執(zhí)行讀寫操作時,先把操作記錄在緩沖區(qū),然后在合適的時機異步、批量地執(zhí)行緩沖區(qū)中的內(nèi)容。但在執(zhí)行緩沖區(qū)的內(nèi)容時,也是需要在緩沖區(qū)加上同步鎖的,不然存在并發(fā)問題,只不過這樣就可以把對鎖的競爭從緩存數(shù)據(jù)轉(zhuǎn)移到對緩沖區(qū)上。
ReadBuffer
在Caffeine的內(nèi)部實現(xiàn)中,為了很好的支持不同的Features(如Eviction,Removal,Refresh,Statistics,Cleanup,Policy等等),擴展了很多子類,它們共同的父類是BoundedLocalCache,而readBuffer就是作為它們共有的屬性,即都是用一樣的readBuffer,看定義:
final?Buffer>?readBuffer;??
??
readBuffer?=?evicts()?||?collectKeys()?||?collectValues()?||?expiresAfterAccess()??
??????????new?BoundedBuffer<>()??
????????:?Buffer.disabled();??
上面提到Caffeine對每次緩存的讀操作都會觸發(fā)afterRead
/**??
?*?Performs?the?post-processing?work?required?after?a?read.??
?*??
?*?@param?node?the?entry?in?the?page?replacement?policy??
?*?@param?now?the?current?time,?in?nanoseconds??
?*?@param?recordHit?if?the?hit?count?should?be?incremented??
?*/??
void?afterRead(Node?node,?long?now,?boolean?recordHit) ?{??
??if?(recordHit)?{??
????statsCounter().recordHits(1);??
??}??
??//把記錄加入到readBuffer??
??//判斷是否需要立即處理readBuffer??
??//注意這里無論offer是否成功都可以走下去的,即允許寫入readBuffer丟失,因為這個??
??boolean?delayable?=?skipReadBuffer()?||?(readBuffer.offer(node)?!=?Buffer.FULL);??
??if?(shouldDrainBuffers(delayable))?{??
????scheduleDrainBuffers();??
??}??
??refreshIfNeeded(node,?now);??
}??
??
?/**??
???*?Returns?whether?maintenance?work?is?needed.??
???*??
???*?@param?delayable?if?draining?the?read?buffer?can?be?delayed??
???*/??
??
??//caffeine用了一組狀態(tài)來定義和管理“維護”的過程??
??boolean?shouldDrainBuffers(boolean?delayable)?{??
????switch?(drainStatus())?{??
??????case?IDLE:??
????????return?!delayable;??
??????case?REQUIRED:??
????????return?true;??
??????case?PROCESSING_TO_IDLE:??
??????case?PROCESSING_TO_REQUIRED:??
????????return?false;??
??????default:??
????????throw?new?IllegalStateException();??
????}??
??}??
重點看BoundedBuffer
/**??
?*?A?striped,?non-blocking,?bounded?buffer.??
?*??
?*?@author[email protected]?(Ben?Manes)??
?*?@param??the?type?of?elements?maintained?by?this?buffer??
?*/ ??
final?class?BoundedBuffer<E>?extends?StripedBuffer<E>??
它是一個striped、非阻塞、有界限的buffer,繼承于StripedBuffer類。下面看看StripedBuffer的實現(xiàn):
/**??
?*?A?base?class?providing?the?mechanics?for?supporting?dynamic?striping?of?bounded?buffers.?This??
?*?implementation?is?an?adaption?of?the?numeric?64-bit?{@link?java.util.concurrent.atomic.Striped64}??
?*?class,?which?is?used?by?atomic?counters.?The?approach?was?modified?to?lazily?grow?an?array?of??
?*?buffers?in?order?to?minimize?memory?usage?for?caches?that?are?not?heavily?contended?on.??
?*??
?*?@author[email protected]?(Doug?Lea)??
?*?@author[email protected]?(Ben?Manes)??
?*/??
??
abstract?class?StripedBuffer<E>?implements?Buffer<E>??
這個StripedBuffer設(shè)計的思想是跟Striped64類似的,通過擴展結(jié)構(gòu)把競爭熱點分離。
具體實現(xiàn)是這樣的,StripedBuffer維護一個Buffer[]數(shù)組,每個元素就是一個RingBuffer,每個線程用自己threadLocalRandomProbe屬性作為hash值,這樣就相當于每個線程都有自己“專屬”的RingBuffer,就不會產(chǎn)生競爭啦,而不是用key的hashCode作為hash值,因為會產(chǎn)生熱點數(shù)據(jù)問題。
看看StripedBuffer的屬性
/**?Table?of?buffers.?When?non-null,?size?is?a?power?of?2.?*/??
//RingBuffer數(shù)組??
transient?volatile?Buffer?@Nullable[]?table;??
??
//當進行resize時,需要整個table鎖住。tableBusy作為CAS的標記。??
static?final?long?TABLE_BUSY?=?UnsafeAccess.objectFieldOffset(StripedBuffer.class,?"tableBusy");??
static?final?long?PROBE?=?UnsafeAccess.objectFieldOffset(Thread.class,?"threadLocalRandomProbe");??
??
/**?Number?of?CPUS.?*/??
static?final?int?NCPU?=?Runtime.getRuntime().availableProcessors();??
??
/**?The?bound?on?the?table?size.?*/??
//table最大size??
static?final?int?MAXIMUM_TABLE_SIZE?=?4?*?ceilingNextPowerOfTwo(NCPU);??
??
/**?The?maximum?number?of?attempts?when?trying?to?expand?the?table.?*/??
//如果發(fā)生競爭時(CAS失敗)的嘗試次數(shù)??
static?final?int?ATTEMPTS?=?3;??
??
/**?Table?of?buffers.?When?non-null,?size?is?a?power?of?2.?*/??
//核心數(shù)據(jù)結(jié)構(gòu)??
transient?volatile?Buffer?@Nullable[]?table;??
??
/**?Spinlock?(locked?via?CAS)?used?when?resizing?and/or?creating?Buffers.?*/??
transient?volatile?int?tableBusy;??
??
/**?CASes?the?tableBusy?field?from?0?to?1?to?acquire?lock.?*/??
final?boolean?casTableBusy()?{??
??return?UnsafeAccess.UNSAFE.compareAndSwapInt(this,?TABLE_BUSY,?0,?1);??
}??
??
/**??
?*?Returns?the?probe?value?for?the?current?thread.?Duplicated?from?ThreadLocalRandom?because?of??
?*?packaging?restrictions.??
?*/??
static?final?int?getProbe()?{??
??return?UnsafeAccess.UNSAFE.getInt(Thread.currentThread(),?PROBE);??
}??
offer方法,當沒初始化或存在競爭時,則擴容為2倍。
實際是調(diào)用RingBuffer的offer方法,把數(shù)據(jù)追加到RingBuffer后面。
@Override??
public?int?offer(E?e)?{??
??int?mask;??
??int?result?=?0;??
??Buffer?buffer;??
??//是否不存在競爭??
??boolean?uncontended?=?true;??
??Buffer[]?buffers?=?table??
??//是否已經(jīng)初始化??
??if?((buffers?==?null)??
??????||?(mask?=?buffers.length?-?1)?0??
??????//用thread的隨機值作為hash值,得到對應(yīng)位置的RingBuffer??
??????||?(buffer?=?buffers[getProbe()?&?mask])?==?null??
??????//檢查追加到RingBuffer是否成功??
??????||?!(uncontended?=?((result?=?buffer.offer(e))?!=?Buffer.FAILED)))?{??
????//其中一個符合條件則進行擴容??
????expandOrRetry(e,?uncontended);??
??}??
??return?result;??
}??
??
/**??
?*?Handles?cases?of?updates?involving?initialization,?resizing,?creating?new?Buffers,?and/or??
?*?contention.?See?above?for?explanation.?This?method?suffers?the?usual?non-modularity?problems?of??
?*?optimistic?retry?code,?relying?on?rechecked?sets?of?reads.??
?*??
?*?@param?e?the?element?to?add??
?*?@param?wasUncontended?false?if?CAS?failed?before?call??
?*/??
??
//這個方法比較長,但思路還是相對清晰的。??
@SuppressWarnings("PMD.ConfusingTernary")??
final?void?expandOrRetry(E?e,?boolean?wasUncontended)?{??
??int?h;??
??if?((h?=?getProbe())?==?0)?{??
????ThreadLocalRandom.current();?//?force?initialization??
????h?=?getProbe();??
????wasUncontended?=?true;??
??}??
??boolean?collide?=?false;?//?True?if?last?slot?nonempty??
??for?(int?attempt?=?0;?attempt?????Buffer[]?buffers;??
????Buffer?buffer;??
????int?n;??
????if?(((buffers?=?table)?!=?null)?&&?((n?=?buffers.length)?>?0))?{??
??????if?((buffer?=?buffers[(n?-?1)?&?h])?==?null)?{??
????????if?((tableBusy?==?0)?&&?casTableBusy())?{?//?Try?to?attach?new?Buffer??
??????????boolean?created?=?false;??
??????????try?{?//?Recheck?under?lock??
????????????Buffer[]?rs;??
????????????int?mask,?j;??
????????????if?(((rs?=?table)?!=?null)?&&?((mask?=?rs.length)?>?0)??
????????????????&&?(rs[j?=?(mask?-?1)?&?h]?==?null))?{??
??????????????rs[j]?=?create(e);??
??????????????created?=?true;??
????????????}??
??????????}?finally?{??
????????????tableBusy?=?0;??
??????????}??
??????????if?(created)?{??
????????????break;??
??????????}??
??????????continue;?//?Slot?is?now?non-empty??
????????}??
????????collide?=?false;??
??????}?else?if?(!wasUncontended)?{?//?CAS?already?known?to?fail??
????????wasUncontended?=?true;??????//?Continue?after?rehash??
??????}?else?if?(buffer.offer(e)?!=?Buffer.FAILED)?{??
????????break;??
??????}?else?if?(n?>=?MAXIMUM_TABLE_SIZE?||?table?!=?buffers)?{??
????????collide?=?false;?//?At?max?size?or?stale??
??????}?else?if?(!collide)?{??
????????collide?=?true;??
??????}?else?if?(tableBusy?==?0?&&?casTableBusy())?{??
????????try?{??
??????????if?(table?==?buffers)?{?//?Expand?table?unless?stale??
????????????table?=?Arrays.copyOf(buffers,?n?<1);??
??????????}??
????????}?finally?{??
??????????tableBusy?=?0;??
????????}??
????????collide?=?false;??
????????continue;?//?Retry?with?expanded?table??
??????}??
??????h?=?advanceProbe(h);??
????}?else?if?((tableBusy?==?0)?&&?(table?==?buffers)?&&?casTableBusy())?{??
??????boolean?init?=?false;??
??????try?{?//?Initialize?table??
????????if?(table?==?buffers)?{??
??????????@SuppressWarnings({"unchecked",?"rawtypes"})??
??????????Buffer[]?rs?=?new?Buffer[1];??
??????????rs[0]?=?create(e);??
??????????table?=?rs;??
??????????init?=?true;??
????????}??
??????}?finally?{??
????????tableBusy?=?0;??
??????}??
??????if?(init)?{??
????????break;??
??????}??
????}??
??}??
}??
最后看看RingBuffer,注意RingBuffer是BoundedBuffer的內(nèi)部類。
/**?The?maximum?number?of?elements?per?buffer.?*/??
static?final?int?BUFFER_SIZE?=?16;??
??
//?Assume?4-byte?references?and?64-byte?cache?line?(16?elements?per?line)??
//256長度,但是是以16為單位,所以最多存放16個元素??
static?final?int?SPACED_SIZE?=?BUFFER_SIZE?<4;??
static?final?int?SPACED_MASK?=?SPACED_SIZE?-?1;??
static?final?int?OFFSET?=?16;???
//RingBuffer數(shù)組??
final?AtomicReferenceArray?buffer;??
??
?//插入方法??
?@Override??
?public?int?offer(E?e)?{??
???long?head?=?readCounter;??
???long?tail?=?relaxedWriteCounter();??
???//用head和tail來限制個數(shù)??
???long?size?=?(tail?-?head);??
???if?(size?>=?SPACED_SIZE)?{??
?????return?Buffer.FULL;??
???}??
???//tail追加16??
???if?(casWriteCounter(tail,?tail?+?OFFSET))?{??
?????//用tail“取余”得到下標??
?????int?index?=?(int)?(tail?&?SPACED_MASK);??
?????//用unsafe.putOrderedObject設(shè)值??
?????buffer.lazySet(index,?e);??
?????return?Buffer.SUCCESS;??
???}??
???//如果CAS失敗則返回失敗??
???return?Buffer.FAILED;??
?}??
??
?//用consumer來處理buffer的數(shù)據(jù)??
?@Override??
?public?void?drainTo(Consumer?consumer) ?{??
???long?head?=?readCounter;??
???long?tail?=?relaxedWriteCounter();??
???//判斷數(shù)據(jù)多少??
???long?size?=?(tail?-?head);??
???if?(size?==?0)?{??
?????return;??
???}??
???do?{??
?????int?index?=?(int)?(head?&?SPACED_MASK);??
?????E?e?=?buffer.get(index);??
?????if?(e?==?null)?{??
???????//?not?published?yet??
???????break;??
?????}??
?????buffer.lazySet(index,?null);??
?????consumer.accept(e);??
?????//head也跟tail一樣,每次遞增16??
?????head?+=?OFFSET;??
???}?while?(head?!=?tail);??
???lazySetReadCounter(head);??
?}??
注意,ring buffer的size(固定是16個)是不變的,變的是head和tail而已。
總的來說ReadBuffer有如下特點:
使用 Striped-RingBuffer來提升對buffer的讀寫
用thread的hash來避開熱點key的競爭
允許寫入的丟失
WriteBuffer
writeBuffer跟readBuffer不一樣,主要體現(xiàn)在使用場景的不一樣。本來緩存的一般場景是讀多寫少的,讀的并發(fā)會更高,且afterRead顯得沒那么重要,允許延遲甚至丟失。寫不一樣,寫afterWrite不允許丟失,且要求盡量馬上執(zhí)行。Caffeine使用MPSC(Multiple Producer / Single Consumer)作為buffer數(shù)組,實現(xiàn)在MpscGrowableArrayQueue類,它是仿照JCTools的MpscGrowableArrayQueue來寫的。
MPSC允許無鎖的高并發(fā)寫入,但只允許一個消費者,同時也犧牲了部分操作。
MPSC我打算另外分析,這里不展開了。
TimerWheel
除了支持expireAfterAccess和expireAfterWrite之外(Guava Cache也支持這兩個特性),Caffeine還支持expireAfter。因為expireAfterAccess和expireAfterWrite都只能是固定的過期時間,這可能滿足不了某些場景,譬如記錄的過期時間是需要根據(jù)某些條件而不一樣的,這就需要用戶自定義過期時間。
先看看expireAfter的用法
private?static?LoadingCache?cache?=?Caffeine.newBuilder()??
????????.maximumSize(256L)??
????????.initialCapacity(1)??
????????//.expireAfterAccess(2,?TimeUnit.DAYS)??
????????//.expireAfterWrite(2,?TimeUnit.HOURS)??
????????.refreshAfterWrite(1,?TimeUnit.HOURS)??
????????//自定義過期時間??
????????.expireAfter(new?Expiry()?{??
????????????//返回創(chuàng)建后的過期時間??
????????????@Override??
????????????public?long?expireAfterCreate(@NonNull?String?key,?@NonNull?String?value,?long?currentTime)?{??
????????????????return?0;??
????????????}??
??
????????????//返回更新后的過期時間??
????????????@Override??
????????????public?long?expireAfterUpdate(@NonNull?String?key,?@NonNull?String?value,?long?currentTime,?@NonNegative?long?currentDuration)?{??
????????????????return?0;??
????????????}??
??
????????????//返回讀取后的過期時間??
????????????@Override??
????????????public?long?expireAfterRead(@NonNull?String?key,?@NonNull?String?value,?long?currentTime,?@NonNegative?long?currentDuration)?{??
????????????????return?0;??
????????????}??
????????})??
????????.recordStats()??
????????.build(new?CacheLoader()?{??
????????????@Nullable??
????????????@Override??
????????????public?String?load(@NonNull?String?key)?throws?Exception?{??
????????????????return?"value_"?+?key;??
????????????}??
????????});??
通過自定義過期時間,使得不同的key可以動態(tài)的得到不同的過期時間。
注意,我把expireAfterAccess和expireAfterWrite注釋了,因為這兩個特性不能跟expireAfter一起使用。
而當使用了expireAfter特性后,Caffeine會啟用一種叫“時間輪”的算法來實現(xiàn)這個功能。更多關(guān)于時間輪的介紹,可以看我的文章HashedWheelTimer時間輪原理分析。
好,重點來了,為什么要用時間輪?
對expireAfterAccess和expireAfterWrite的實現(xiàn)是用一個AccessOrderDeque雙端隊列,它是FIFO的,因為它們的過期時間是固定的,所以在隊列頭的數(shù)據(jù)肯定是最早過期的,要處理過期數(shù)據(jù)時,只需要首先看看頭部是否過期,然后再挨個檢查就可以了。但是,如果過期時間不一樣的話,這需要對accessOrderQueue進行排序&插入,這個代價太大了。于是,Caffeine用了一種更加高效、優(yōu)雅的算法-時間輪。
時間輪的結(jié)構(gòu):

因為在我的對時間輪分析的文章里已經(jīng)說了時間輪的原理和機制了,所以我就不展開Caffeine對時間輪的實現(xiàn)了。
Caffeine對時間輪的實現(xiàn)在TimerWheel,它是一種多層時間輪(hierarchical timing wheels )。
看看元素加入到時間輪的schedule方法:
/**??
?*?Schedules?a?timer?event?for?the?node.??
?*??
?*?@param?node?the?entry?in?the?cache??
?*/??
public?void?schedule(@NonNull?Node?node) ?{??
??Node?sentinel?=?findBucket(node.getVariableTime());??
??link(sentinel,?node);??
}??
??
/**??
?*?Determines?the?bucket?that?the?timer?event?should?be?added?to.??
?*??
?*?@param?time?the?time?when?the?event?fires??
?*?@return?the?sentinel?at?the?head?of?the?bucket??
?*/??
Node?findBucket(long?time)? {??
??long?duration?=?time?-?nanos;??
??int?length?=?wheel.length?-?1;??
??for?(int?i?=?0;?i?????if?(duration?1])?{??
??????long?ticks?=?(time?>>>?SHIFT[i]);??
??????int?index?=?(int)?(ticks?&?(wheel[i].length?-?1));??
??????return?wheel[i][index];??
????}??
??}??
??return?wheel[length][0];??
}??
??
/**?Adds?the?entry?at?the?tail?of?the?bucket's?list.?*/??
void?link(Node?sentinel,?Node?node) ?{??
??node.setPreviousInVariableOrder(sentinel.getPreviousInVariableOrder());??
??node.setNextInVariableOrder(sentinel);??
??
??sentinel.getPreviousInVariableOrder().setNextInVariableOrder(node);??
??sentinel.setPreviousInVariableOrder(node);??
}??
其他
Caffeine還有其他的優(yōu)化性能的手段,如使用軟引用和弱引用、消除偽共享、CompletableFuture異步等等。
總結(jié)
Caffeien是一個優(yōu)秀的本地緩存,通過使用W-TinyLFU算法, 高性能的readBuffer和WriteBuffer,時間輪算法等,使得它擁有高性能,高命中率(near optimal),低內(nèi)存占用等特點。
參考資料
TinyLFU論文
Design Of A Modern Cache
Design Of A Modern Cache—Part Deux
Caffeine的github
END
有熱門推薦?
1.?重磅 ! Kubernetes 決定棄用 Docker!
最近面試BAT,整理一份面試資料《Java面試BATJ通關(guān)手冊》,覆蓋了Java核心技術(shù)、JVM、Java并發(fā)、SSM、微服務(wù)、數(shù)據(jù)庫、數(shù)據(jù)結(jié)構(gòu)等等。
獲取方式:點“在看”,關(guān)注公眾號并回復(fù)?Java?領(lǐng)取,更多內(nèi)容陸續(xù)奉上。
文章有幫助的話,在看,轉(zhuǎn)發(fā)吧。
謝謝支持喲 (*^__^*)

