MongoDB vs MySQL,哪個(gè)效率更高?
互聯(lián)網(wǎng)架構(gòu)師后臺(tái)回復(fù) 2T 有特別禮包
測(cè)試環(huán)境:win7旗艦版、16G內(nèi)存、i3處理器、MongoDB3.0.2、mysql5.0
一、MongoDB批量操作
BulkWriteResult com.mongodb.client.MongoCollection.bulkWrite(List<? extends WriteModel<? extends Document>> requests)
1、插入操作
public void bulkWriteInsert(List<Document> documents){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
for (Document document : documents) {
//構(gòu)造插入單個(gè)文檔的操作模型
InsertOneModel<Document> iom = new InsertOneModel<Document>(document);
requests.add(iom);
}
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}
TestMongoDB instance = TestMongoDB.getInstance();
ArrayList<Document> documents = new ArrayList<Document>();
for (int i = 0; i < 100000; i++) {
Product product = new Product(i,"書(shū)籍","追風(fēng)箏的人",22.5);
//將java對(duì)象轉(zhuǎn)換成json字符串
String jsonProduct = JsonParseUtil.getJsonString4JavaPOJO(product);
//將json字符串解析成Document對(duì)象
Document docProduct = Document.parse(jsonProduct);
documents.add(docProduct);
}
System.out.println("開(kāi)始插入數(shù)據(jù)。。。");
long startInsert = System.currentTimeMillis();
instance.bulkWriteInsert(documents);
System.out.println("插入數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - startInsert)+"毫秒");
結(jié)果:1560毫秒,多次測(cè)試基本在1.5秒左右

(2)、逐條插入
下面再通過(guò)非批量插入10萬(wàn)個(gè)數(shù)據(jù)對(duì)比下,方法如下:
public void insertOneByOne(List<Document> documents) throws ParseException{
for (Document document : documents){
collection.insertOne(document);
}
}
測(cè)試:10萬(wàn)條數(shù)據(jù)
System.out.println("開(kāi)始插入數(shù)據(jù)。。。");
long startInsert = System.currentTimeMillis();
instance.insertOneByOne(documents);
System.out.println("插入數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - startInsert)+"毫秒");
結(jié)果:12068毫秒,差距非常大。由此可見(jiàn),MongoDB批量插入比逐條數(shù)據(jù)插入效率提高了非常多。

補(bǔ)充:
MongoCollection的insertMany()方法和bulkWrite()方法是等價(jià)的,測(cè)試時(shí)間差不多,不再貼圖。
public void insertMany(List<Document> documents) throws ParseException{
//和bulkWrite()方法等價(jià)
collection.insertMany(documents);
}
2、刪除操作
_id字段,該字段在文檔插入數(shù)據(jù)庫(kù)后自動(dòng)生成,沒(méi)插入數(shù)據(jù)庫(kù)前document.get("_id")為null,如果使用其他條件比如productId,那么要在文檔插入到collection后在productId字段上添加索引collection.createIndex(new Document("productId", 1));
因?yàn)殡S著collection數(shù)據(jù)量的增大,查找將越耗時(shí),添加索引是為了提高查找效率,進(jìn)而加快刪除效率。另外,值得一提的是DeleteOneModel表示至多刪除一條匹配條件的記錄,DeleteManyModel表示刪除匹配條件的所有記錄。為了防止一次刪除多條記錄,這里使用DeleteOneModel,保證一個(gè)操作只刪除一條記錄。當(dāng)然這里不可能匹配多條記錄,因?yàn)開(kāi)id是唯一的。搜索公眾號(hào)互聯(lián)網(wǎng)架構(gòu)師后臺(tái)回復(fù)“2T”,獲取一份驚喜禮包。
public void bulkWriteDelete(List<Document> documents){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
for (Document document : documents) {
//刪除條件
Document queryDocument = new Document("_id",document.get("_id"));
//構(gòu)造刪除單個(gè)文檔的操作模型,
DeleteOneModel<Document> dom = new DeleteOneModel<Document>(queryDocument);
requests.add(dom);
}
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}
System.out.println("開(kāi)始刪除數(shù)據(jù)。。。");
long startDelete = System.currentTimeMillis();
instance.bulkWriteDelete(documents);
System.out.println("刪除數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - startDelete)+"毫秒");

(2)、逐條刪
來(lái)看看在非批量下的刪除
public void deleteOneByOne(List<Document> documents){
for (Document document : documents) {
Document queryDocument = new Document("_id",document.get("_id"));
DeleteResult deleteResult = collection.deleteOne(queryDocument);
}
}
System.out.println("開(kāi)始刪除數(shù)據(jù)。。。");
long startDelete = System.currentTimeMillis();
instance.deleteOneByOne(documents);
System.out.println("刪除數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - startDelete)+"毫秒");

3、更新操作
(1)、批量更新
public void bulkWriteUpdate(List<Document> documents){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
for (Document document : documents) {
//更新條件
Document queryDocument = new Document("_id",document.get("_id"));
//更新內(nèi)容,改下書(shū)的價(jià)格
Document updateDocument = new Document("$set",new Document("price","30.6"));
//構(gòu)造更新單個(gè)文檔的操作模型
UpdateOneModel<Document> uom = new UpdateOneModel<Document>(queryDocument,updateDocument,new UpdateOptions().upsert(false));
//UpdateOptions代表批量更新操作未匹配到查詢條件時(shí)的動(dòng)作,默認(rèn)false,什么都不干,true時(shí)表示將一個(gè)新的Document插入數(shù)據(jù)庫(kù),他是查詢部分和更新部分的結(jié)合
requests.add(uom);
}
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}
System.out.println("開(kāi)始更新數(shù)據(jù)。。。");
long startUpdate = System.currentTimeMillis();
instance.bulkWriteUpdate(documents);
System.out.println("更新數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - startUpdate)+"毫秒");

(2)、逐條更新
對(duì)比非批量下的更新
public void updateOneByOne(List<Document> documents){
for (Document document : documents) {
Document queryDocument = new Document("_id",document.get("_id"));
Document updateDocument = new Document("$set",new Document("price","30.6"));
UpdateResult UpdateResult = collection.updateOne(queryDocument, updateDocument);
}
}
System.out.println("開(kāi)始更新數(shù)據(jù)。。。");
long startUpdate = System.currentTimeMillis();
instance.updateOneByOne(documents);
System.out.println("更新數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - startUpdate)+"毫秒");

4、混合批量操作
public void bulkWriteMix(){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
InsertOneModel<Document> iom = new InsertOneModel<Document>(new Document("name","kobe"));
UpdateManyModel<Document> umm = new UpdateManyModel<Document>(new Document("name","kobe"),
new Document("$set",new Document("name","James")),new UpdateOptions().upsert(true));
DeleteManyModel<Document> dmm = new DeleteManyModel<Document>(new Document("name","James"));
requests.add(iom);
requests.add(umm);
requests.add(dmm);
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}

注意:updateMany()、deleteMany()兩個(gè)方法和insertMany()不同,它倆不是批量操作,而是代表更新(刪除)匹配條件的所有數(shù)據(jù)。
二、與MySQL性能對(duì)比
1、插入操作
與MongoDB一樣,也是插入Product實(shí)體對(duì)象,代碼如下
public void insertBatch(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
PreparedStatement pst = conn.prepareStatement("insert into t_product value(?,?,?,?)");
int count = 1;
for (Product product : list) {
pst.setInt(1, product.getProductId());
pst.setString(2, product.getCategory());
pst.setString(3, product.getName());
pst.setDouble(4, product.getPrice());
pst.addBatch();
if(count % 1000 == 0){
pst.executeBatch();
pst.clearBatch();//每1000條sql批處理一次,然后置空PreparedStatement中的參數(shù),這樣也能提高效率,防止參數(shù)積累過(guò)多事務(wù)超時(shí),但實(shí)際測(cè)試效果不明顯
}
count++;
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
connection.setAutoCommit(false);
public static void main(String[] args) throws Exception {
TestMysql test = new TestMysql();
ArrayList<Product> list = new ArrayList<Product>();
for (int i = 0; i < 1000; i++) {
Product product = new Product(i, "書(shū)籍", "追風(fēng)箏的人", 20.5);
list.add(product);
}
System.out.println("MYSQL開(kāi)始插入數(shù)據(jù)。。。");
long insertStart = System.currentTimeMillis();
test.insertBatch(list);
System.out.println("MYSQL插入數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - insertStart)+"毫秒");
}

再來(lái)看看mysql逐條插入,代碼如下:
public void insertOneByOne(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
for (Product product : list) {
PreparedStatement pst = conn.prepareStatement("insert into t_product value(?,?,?,?)");
pst.setInt(1, product.getProductId());
pst.setString(2, product.getCategory());
pst.setString(3, product.getName());
pst.setDouble(4, product.getPrice());
pst.executeUpdate();
//conn.commit();//加上這句每次插入都提交事務(wù),結(jié)果將是非常耗時(shí)
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
System.out.println("MYSQL開(kāi)始插入數(shù)據(jù)。。。");
long insertStart = System.currentTimeMillis();
test.insertOneByOne(list);
System.out.println("MYSQL插入數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - insertStart)+"毫秒");
2、刪除操作
public void deleteBatch(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
PreparedStatement pst = conn.prepareStatement("delete from t_product where id = ?");//按主鍵查,否則全表遍歷很慢
int count = 1;
for (Product product : list) {
pst.setInt(1, product.getProductId());
pst.addBatch();
if(count % 1000 == 0){
pst.executeBatch();
pst.clearBatch();
}
count++;
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
System.out.println("MYSQL開(kāi)始刪除數(shù)據(jù)。。。");
long deleteStart = System.currentTimeMillis();
test.deleteBatch(list);
System.out.println("MYSQL刪除數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - deleteStart)+"毫秒");
public void deleteOneByOne(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
PreparedStatement pst = null;
try {
for (Product product : list) {
pst = conn.prepareStatement("delete from t_product where id = ?");
pst.setInt(1, product.getProductId());
pst.executeUpdate();
//conn.commit();//加上這句每次插入都提交事務(wù),結(jié)果將是非常耗時(shí)
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
System.out.println("MYSQL開(kāi)始刪除數(shù)據(jù)。。。");
long deleteStart = System.currentTimeMillis();
test.deleteOneByOne(list);
System.out.println("MYSQL刪除數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - deleteStart)+"毫秒");
3、更新操作
public void updateBatch(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
PreparedStatement pst = conn.prepareStatement("update t_product set price=31.5 where id=?");
int count = 1;
for (Product product : list) {
pst.setInt(1, product.getProductId());
pst.addBatch();
if(count % 1000 == 0){
pst.executeBatch();
pst.clearBatch();//每1000條sql批處理一次,然后置空PreparedStatement中的參數(shù),這樣也能提高效率,防止參數(shù)積累過(guò)多事務(wù)超時(shí),但實(shí)際測(cè)試效果不明顯
}
count++;
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
System.out.println("MYSQL開(kāi)始更新數(shù)據(jù)。。。");
long updateStart = System.currentTimeMillis();
test.updateBatch(list);
System.out.println("MYSQL更新數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - updateStart)+"毫秒");
public void updateOneByOne(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
for (Product product : list) {
PreparedStatement pst = conn.prepareStatement("update t_product set price=30.5 where id=?");
pst.setInt(1, product.getProductId());
pst.executeUpdate();
//conn.commit();//加上這句每次插入都提交事務(wù),結(jié)果將是非常耗時(shí)
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
System.out.println("MYSQL開(kāi)始更新數(shù)據(jù)。。。");
long updateStart = System.currentTimeMillis();
test.updateOneByOne(list);
System.out.println("MYSQL更新數(shù)據(jù)完成,共耗時(shí):"+(System.currentTimeMillis() - updateStart)+"毫秒");
三、總結(jié)
原文鏈接:https://blog.csdn.net/u014513883/article/details/49365987
最后,關(guān)注公眾號(hào)互聯(lián)網(wǎng)架構(gòu)師,在后臺(tái)回復(fù):2T,可以獲取我整理的 Java 系列面試題和答案,非常齊全。
正文結(jié)束
1.心態(tài)崩了!稅前2萬(wàn)4,到手1萬(wàn)4,年終獎(jiǎng)扣稅方式1月1日起施行~
2.深圳一普通中學(xué)老師工資單曝光,秒殺程序員,網(wǎng)友:敢問(wèn)是哪個(gè)學(xué)校畢業(yè)的?
3.從零開(kāi)始搭建創(chuàng)業(yè)公司后臺(tái)技術(shù)棧
5.清華大學(xué):2021 元宇宙研究報(bào)告!
6.為什么國(guó)內(nèi) 996 干不過(guò)國(guó)外的 955呢?

