ES實現(xiàn)百億級數(shù)據(jù)實時分析實戰(zhàn)案例

背景
覆蓋率:所有樣本中出現(xiàn)某一特征的樣本的比例
正樣本占比:所有出現(xiàn)該特征的樣本中,正樣本的比例
負樣本占比:所有出現(xiàn)該特征的樣本中,負樣本的比例
技術(shù)方案
第一種:用Spark流式計算,計算每一種可能單個或組合特征的相關(guān)指標
第二種:收到客戶端請求后,遍歷HDFS中相關(guān)數(shù)據(jù),進行離線計算
第三種:將數(shù)據(jù)按照實驗+小時分索引存入ES,收到客戶端請求后,實時計算返回
技術(shù)架構(gòu)

代碼實現(xiàn)
// 啟動并行任務(wù)
final Map>> futures = Maps.newHashMap();
for(String metric : metrics) { // 遍歷要計算的指標
final SampleRatio sampleRatio = getSampleRatio(metric);
for (String exptId : expts) { // 遍歷目標實驗列表
for (String id : features) { // 遍歷要分析的特征
final String name = getMetricsName(exptId, sampleRatio, id);
final List> resultList = Lists.newArrayList();
for (Date hour : coveredHours) { // 將時間按照小時進行拆分
final String fieldName = getFieldName(isFect ? Constants.FACET_COLLECT : Constants.FEATURE_COLLECT, id);
final GetCoverageTask task = new GetCoverageTask(exptId, fieldName, sampleRatio, hour);
// 啟動并行任務(wù)
final Futurefuture = TaskExecutor.submit(task);
resultList.add(future);
}
futures.put(name, resultList);
}
}
}
final QueryRes queryRes = new QueryRes();
final Iterator>>> it = futures.entrySet().iterator();
while (it.hasNext()){
// 省略結(jié)果處理流程
}
// 1\. 對文檔進行聚合運行,分別得到基礎(chǔ)文檔的數(shù)量,以及目標文檔數(shù)量
final AggregationBuilder[] agg = getAggregationBuilder(sampleRatio, fieldName);
final SearchSourceBuilder searchBuilder = new SearchSourceBuilder();
searchBuilder.aggregation(agg[0]).aggregation(agg[1]).size(0);
// 2\. 得到覆蓋率
final String indexName = getIndexName(exptId, hour);
final Search search = new Search.Builder(searchBuilder.toString())
.addIndex(indexName).addType(getType()).build();
final SearchResult result = jestClient.execute(search);
if(result.getResponseCode() != HttpUtils.STATUS_CODE_200){
// 請求出錯
log.warn(result.getErrorMessage());
return 0f;
}
final MetricAggregation aggregations = result.getAggregations();
// 3\. 解析結(jié)果
final long dividend ;
if(SampleRatio.ALL == sampleRatio){
dividend = aggregations.getValueCountAggregation(Constants.DIVIDEND).getValueCount();
}else {
dividend = aggregations.getFilterAggregation(Constants.DIVIDEND).getCount();
}
// 防止出現(xiàn)被除數(shù)為0時程序異常
if(dividend <= 0){
return 0f;
}
long divisor = aggregations.getFilterAggregation(Constants.DIVISOR).getCount();
return divisor / (float)dividend;
int label = 0;
final ExistsQueryBuilder existsQuery = QueryBuilders.existsQuery(fieldName);
// 包含指定特征的正樣本數(shù)量
final BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
final Listmust = boolQuery.must();
// 計算樣本數(shù)量
TermQueryBuilder labelQuery = null;
if(SampleRatio.POSITIVE == sampleRatio) {
// 計算正樣本數(shù)量
label = 1;
labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);
must.add(labelQuery);
}else if(SampleRatio.NEGATIVE == sampleRatio) {
// 計算負樣本數(shù)量
labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);
must.add(labelQuery);
}
must.add(existsQuery);
final ValueCountAggregationBuilder existsCountAgg = AggregationBuilders.count(sampleRatio.getField());
existsCountAgg.field(fieldName);
final FilterAggregationBuilder filterAgg = AggregationBuilders.filter(aggName, boolQuery);
filterAgg.subAggregation(existsCountAgg);
return filterAgg;
上線效果



評論
圖片
表情
