人臉檢測(cè)與識(shí)別的趨勢(shì)和分析
點(diǎn)擊上方“小白學(xué)視覺”,選擇加"星標(biāo)"或“置頂”
重磅干貨,第一時(shí)間送達(dá)
現(xiàn)在打開谷*公司的搜索器,輸入 “face detect”,估計(jì)大家都能夠想到,都是五花八門的大牛文章,我是羨慕啊?。ㄒ?yàn)槔锩鏇]有我的一篇,我們實(shí)驗(yàn)室的原因,至今沒有讓我發(fā)一篇有點(diǎn)權(quán)威的文章,我接下來會(huì)寫4張4A紙的檢討,去自我檢討下為什么?-----藍(lán)姑)
原歸正傳,讓我開始說說人臉這個(gè)技術(shù),真的是未來不可估計(jì)的IT技術(shù),不知道未來會(huì)有多少企業(yè)為了這個(gè)技術(shù)潛心研究,現(xiàn)在就來看看最近的技術(shù)和未來的發(fā)展吧!
我先大概說下遇到的一些問題:
??圖像質(zhì)量
人臉識(shí)別系統(tǒng)的主要要求是期望高質(zhì)量的人臉圖像,而質(zhì)量好的圖像則在期望條件下被采集。圖像質(zhì)量對(duì)于提取圖像特征很重要,因此,即使是最好的識(shí)別算法也會(huì)受圖像質(zhì)量下降的影響;
??照明問題
同一張臉因照明變化而出現(xiàn)不同,照明可以徹底改變物體的外觀;
??姿勢(shì)變化
從正面獲取,姿勢(shì)變化會(huì)產(chǎn)生許多照片,姿態(tài)變化難以準(zhǔn)確識(shí)別人臉;
??面部形狀/紋理隨著時(shí)間推移的變化
有可能隨著時(shí)間的推移,臉的形狀和紋理可能會(huì)發(fā)生變化;
??相機(jī)與人臉的距離
如果圖像是從遠(yuǎn)處拍攝的,有時(shí)從較長(zhǎng)的距離捕獲的人臉將會(huì)遭遇質(zhì)量低劣和噪音的影響;
??遮擋
用戶臉部可能會(huì)遮擋,被其他人或物體(如眼鏡等)遮擋,在這種情況下很難識(shí)別這些采集的臉。
就先說這些問題吧,還有其他問題,讀者你可以自己再去總結(jié)一些,其實(shí)很easy!
在沒有DL出現(xiàn)之前,大家都是在用傳統(tǒng)的機(jī)器算法和統(tǒng)計(jì)學(xué)的算法來對(duì)以上問題進(jìn)行研究,仔細(xì)想想,大牛真的好厲害,能想出那么多經(jīng)典的算法,下面我先簡(jiǎn)單介紹幾個(gè):
Adaboost人臉檢測(cè)算法,是基于積分圖、級(jí)聯(lián)檢測(cè)器和Adaboost算法的方法,該方法能夠檢測(cè)出正面人臉且檢測(cè)速度快。其核心思想是自動(dòng)從多個(gè)弱分類器的空間中挑選出若干個(gè)分類器,構(gòu)成一個(gè)分類能力很強(qiáng)的強(qiáng)分類器。
缺點(diǎn):而在復(fù)雜背景中,AdaBoost人臉檢測(cè)算法容易受到復(fù)雜環(huán)境的影響,導(dǎo)致檢測(cè)結(jié)果并不穩(wěn)定,極易將類似人臉區(qū)域誤檢為人臉,誤檢率較高。?
基于特征的方法實(shí)質(zhì)就是利用人臉的等先驗(yàn)知識(shí)導(dǎo)出的規(guī)則進(jìn)行人臉檢測(cè)。
① 邊緣和形狀特征:人臉及人臉器官具有典型的邊緣和形狀特征,如人臉輪廓、眼瞼輪廓、虹膜輪廓、嘴唇輪廓等都可以近似為常見的幾何單元;
② 紋理特征:人臉具有特定的紋理特征,紋理是在圖上表現(xiàn)為灰度或顏色分布的某種規(guī)律性,這種規(guī)律性在不同類別的紋理中有其不同特點(diǎn);
③ 顏色特征:人臉的皮膚顏色是人臉表面最為顯著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空間模型被用來表示人臉的膚色,從而進(jìn)行基于顏色信息的人臉檢測(cè)方法的研究。
基于模板匹配的方法的思路就是通過計(jì)算人臉模板和待檢測(cè)圖像之間的相關(guān)性來實(shí)現(xiàn)人臉檢測(cè)功能的,按照人臉模型的類型可以分為兩種情況:
① 基于通用模板的方法,這種方法主要是使用人工定義的方法來給出人臉通用模板。對(duì)于待檢測(cè)的人臉圖像,分別計(jì)算眼睛,鼻子,嘴等特征同人臉模板的相關(guān)性,由相關(guān)性的大小來判斷是否存在人臉。通用模板匹配方法的優(yōu)點(diǎn)是算法簡(jiǎn)單,容易實(shí)現(xiàn),但是它也有自身缺點(diǎn),如模板的尺寸、大小、形狀不能進(jìn)行自適應(yīng)的變化,從而導(dǎo)致了這種方法適用范圍較窄;
② 基于可變形模板的方法,可變形模板法是對(duì)基于幾何特征和通用模板匹配方法的一種改進(jìn)。通過設(shè)計(jì)一個(gè)可變模型,利用監(jiān)測(cè)圖像的邊緣、波峰和波谷值構(gòu)造能量函數(shù),當(dāng)能量函數(shù)取得最小值時(shí),此時(shí)所對(duì)應(yīng)的模型的參數(shù)即為人臉面部的幾何特征。這種方法存在的不足之處在于能量函數(shù)在優(yōu)化時(shí)十分復(fù)雜,消耗時(shí)間較長(zhǎng),并且能量函數(shù)中的各個(gè)加權(quán)系數(shù)都是靠經(jīng)驗(yàn)值確定的,在實(shí)際應(yīng)用中有一定的局限性。
基于統(tǒng)計(jì)理論的方法是指利用統(tǒng)計(jì)分析與機(jī)器學(xué)習(xí)的方法分別尋找人臉與非人臉樣本特征,利用這些特征構(gòu)建分類,使用分類進(jìn)行人臉檢測(cè)。它主要包括神經(jīng)網(wǎng)絡(luò)方法,支持向量機(jī)方法和隱馬爾可夫模型方法?;诮y(tǒng)計(jì)理論的方法是通過樣本學(xué)習(xí)而不是根據(jù)人們的直觀印象得到的表象規(guī)律,因此可以減小由于人眼觀測(cè)不完整和不精確帶來的錯(cuò)誤而不得不擴(kuò)大檢測(cè)的范圍,但是這種方法需要大量的統(tǒng)計(jì)特性,樣本訓(xùn)練費(fèi)時(shí)費(fèi)力。
以上也都是通過快速閱讀得到的一些結(jié)論,大部分都是直接引用文章作者的語句。其中在這些方法中,都有很多改進(jìn),比如PCA+Adaboost,HMM等。
現(xiàn)在用傳統(tǒng)的技術(shù)已經(jīng)不能再有新的突破,所以現(xiàn)在流行了DL架構(gòu),打破了人類的極限,又將檢測(cè),識(shí)別,跟蹤等技術(shù)上升到另一個(gè)高度。
現(xiàn)在來簡(jiǎn)單講講最近幾年神經(jīng)網(wǎng)絡(luò)的牛X之處。
1)Retinal Connected Neural Network (RCNN)?
?
?
4)Evolutionary Optimization of Neural Networks
還有好多就不一一介紹了。在此推薦讀者你閱讀《Recent Advances in Face Detection》,分析的特別詳細(xì),希望對(duì)大家有幫助,謝謝!
下面我來給大家提供一些公開的數(shù)據(jù)庫:
■Annotated Database (Hand, Meat, LV Cardiac, IMM face) (http://www2.imm.dtu.dk/~aam/)
■AR Face Database (http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html)
■BioID Face Database (https://www.bioid.com/About/BioID-Face-Database)
■Caltech Computational Vision Group Archive (Cars, Motorcycles, Airplanes, Faces, Leaves, Background) (http://www.vision.caltech.edu/html-files/archive.html)
■Carnegie Mellon Image Database (motion, stereo, face, car, ...) (http://vasc.ri.cmu.edu/idb/)
■CAS-PEAL Face Database (http://www.jdl.ac.cn/peal/index.html)
■CMU Cohn-Kanade AU-Coded Facial Expression Database (http://www.ri.cmu.edu/projects/project_421.html
■CMU Face Detection Databases (http://www.ri.cmu.edu/projects/project_419.html)
■CMU Face Expression Database (http://amp.ece.cmu.edu/projects/FaceAuthentication/download.htm)
■CMU Face Pose, Illumination, and Expression (PIE) Database (http://www.ri.cmu.edu/projects/project_418.html)
■CMU VASC Image Database (motion, road sequences, stereo, CIL’s stereo data with ground truth, JISCT, face, face expressions, car) (CMU VASC Image Database)
■Content-based Image Retrieval Database (Index of /groundtruth)
■Face Video Database of the Max Planck Institute for Biological Cybernetics (Welcome)
■FERET Database (frvt.org)
■FERET Color Database (The Color FERET Databasehttp://face.nist.gov/colorferet/?)
■Georgia Tech Face Database (http://www.anefian.com/face_reco.htm)
■German Fingerspelling Database (http://www.anefian.com/face_reco.htm)
■Indian Face Database (http://http://www.cs.umass.edu/~vidit/IndianFaceDatabase)
■MIT-CBCL Car Database (Pedestrian Data)
■MIT-CBCL Face Recognition Database (CBCL FACE RECOGNITION DATABASE)
■MIT-CBCL Face Databases (CBCL SOFTWARE)
■MIT-CBCL Pedestrian Database (New Page 1)
■MIT-CBCL Street Scenes Database (CBCL StreetScenes Database Download Page:)
■NIST/Equinox Visible and Infrared Face Image Database (http://www.equinoxsensors.com/products/HID.html)
■NIST Fingerprint Data at Columbia (Link)
■ORL Database of Faces (The Database of Faces)
■Rutgers Skin Texture Database (http://www.caip.rutgers.edu/rutgers_texture/)
■The Japanese Female Facial Expression (JAFFE) Database (Japanese Female Facial Expression (JAFFE) Database
■The Ohio State University SAMPL Image Database (3D, still, motion) (http://sampl.ece.ohio-state.edu/database.htm)
■The University of Oulu Physics-Based Face Database (Center for Machine Vision and Signal Analysis)
■UMIST Face Database (http://images.ee.umist.ac.uk/danny/database.html)
■USF Range Image Data (with ground truth) (USF Range Image Database)
■Usenix Face Database (hundreds of images, several formats) (Link)
■UCI Machine Learning Repository (http://www1.ics.uci.edu/~mlearn/MLSummary.html)
■USC-SIPI Image Database?(collection of digitized images) (SIPI Image Database)
■UCD VALID Database (multimodal for still face, audio, and video) (VALID Database)
■UCD Color Face Image (UCFI) Database for Face Detection (http://ee.ucd.ie/~prag/)
■UCL M2VTS Multimodal Face Database (http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html)
■Vision Image Archive at UMass (sequences, stereo, medical, indoor, outlook, road, underwater, aerial, satellite, space and more) (SIPI Image Database)
■Where can I find Lenna and other images? (comp.compression Frequently Asked Questions (part 1/3)Section - [55] Where can I find Lenna and other images?)
■Yale Face Database (http://cvc.yale.edu/projects/yalefaces/yalefaces.html)
■Yale Face Database B (http://cvc.yale.edu/projects/yalefaces/yalefaces.html)
最后我附上我近期做的效果圖,是基于視頻中人臉檢測(cè)與識(shí)別的,因?yàn)闆]有標(biāo)準(zhǔn),公共的數(shù)據(jù)集,所以我就用室內(nèi)場(chǎng)景劇作為訓(xùn)練數(shù)據(jù),最后的效果很不錯(cuò),希望以后有同學(xué)做人臉的,我們可以一起討論,共同進(jìn)步,謝謝!

好消息!?
小白學(xué)視覺知識(shí)星球
開始面向外開放啦??????
下載1:OpenCV-Contrib擴(kuò)展模塊中文版教程 在「小白學(xué)視覺」公眾號(hào)后臺(tái)回復(fù):擴(kuò)展模塊中文教程,即可下載全網(wǎng)第一份OpenCV擴(kuò)展模塊教程中文版,涵蓋擴(kuò)展模塊安裝、SFM算法、立體視覺、目標(biāo)跟蹤、生物視覺、超分辨率處理等二十多章內(nèi)容。 下載2:Python視覺實(shí)戰(zhàn)項(xiàng)目52講 在「小白學(xué)視覺」公眾號(hào)后臺(tái)回復(fù):Python視覺實(shí)戰(zhàn)項(xiàng)目,即可下載包括圖像分割、口罩檢測(cè)、車道線檢測(cè)、車輛計(jì)數(shù)、添加眼線、車牌識(shí)別、字符識(shí)別、情緒檢測(cè)、文本內(nèi)容提取、面部識(shí)別等31個(gè)視覺實(shí)戰(zhàn)項(xiàng)目,助力快速學(xué)校計(jì)算機(jī)視覺。 下載3:OpenCV實(shí)戰(zhàn)項(xiàng)目20講 在「小白學(xué)視覺」公眾號(hào)后臺(tái)回復(fù):OpenCV實(shí)戰(zhàn)項(xiàng)目20講,即可下載含有20個(gè)基于OpenCV實(shí)現(xiàn)20個(gè)實(shí)戰(zhàn)項(xiàng)目,實(shí)現(xiàn)OpenCV學(xué)習(xí)進(jìn)階。 交流群
歡迎加入公眾號(hào)讀者群一起和同行交流,目前有SLAM、三維視覺、傳感器、自動(dòng)駕駛、計(jì)算攝影、檢測(cè)、分割、識(shí)別、醫(yī)學(xué)影像、GAN、算法競(jìng)賽等微信群(以后會(huì)逐漸細(xì)分),請(qǐng)掃描下面微信號(hào)加群,備注:”昵稱+學(xué)校/公司+研究方向“,例如:”張三?+?上海交大?+?視覺SLAM“。請(qǐng)按照格式備注,否則不予通過。添加成功后會(huì)根據(jù)研究方向邀請(qǐng)進(jìn)入相關(guān)微信群。請(qǐng)勿在群內(nèi)發(fā)送廣告,否則會(huì)請(qǐng)出群,謝謝理解~















