【大數(shù)據(jù)實(shí)戰(zhàn)】Flume+Kafka+Spark+Spring Boot 統(tǒng)計網(wǎng)頁訪問量項目
1.需求說明
1.1 需求
到現(xiàn)在為止的網(wǎng)頁訪問量
到現(xiàn)在為止從搜索引擎引流過來的網(wǎng)頁訪問量
項目總體框架如圖所示:

1.2 用戶行為日志內(nèi)容

2.模擬日志數(shù)據(jù)制作
用Python制作模擬數(shù)據(jù),數(shù)據(jù)包含:
不同的URL地址->url_paths
不同的跳轉(zhuǎn)鏈接地址->http_refers
不同的搜索關(guān)鍵詞->search_keyword
不同的狀態(tài)碼->status_codes
不同的IP地址->ip_slices
#coding=UTF-8import randomimport timeurl_paths = ["class/112.html","class/128.html","class/145.html","class/146.html","class/131.html","class/130.html","class/145.html","learn/821.html","learn/825.html","course/list"]http_refers=["http://www.baidu.com/s?wd={query}","https://www.sogou.com/web?query={query}","http://cn.bing.com/search?q={query}","http://search.yahoo.com/search?p={query}",]search_keyword = ["Spark+Sql","Hadoop","Storm","Spark+Streaming","大數(shù)據(jù)","面試"]status_codes = ["200","404","500"]ip_slices = [132,156,132,10,29,145,44,30,21,43,1,7,9,23,55,56,241,134,155,163,172,144,158]def sample_url():return random.sample(url_paths,1)[0]def sample_ip():slice = random.sample(ip_slices,4)return ".".join([str(item) for item in slice])def sample_refer():if random.uniform(0,1) > 0.2:return "-"refer_str = random.sample(http_refers,1)query_str = random.sample(search_keyword,1)return refer_str[0].format(query=query_str[0])def sample_status():return random.sample(status_codes,1)[0]def generate_log(count = 10):time_str = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime())f = open("/home/hadoop/tpdata/project/logs/access.log","w+")while count >= 1:query_log = "{ip}\t{local_time}\t\"GET /{url} HTTP/1.1\"\t{status}\t{refer}".format(local_time=time_str,url=sample_url(),ip=sample_ip(),refer=sample_refer(),status=sample_status())print(query_log)f.write(query_log + "\n")count = count - 1if __name__ == '__main__':generate_log(100)
使用Linux Crontab定時調(diào)度工具,使其每一分鐘產(chǎn)生一批數(shù)據(jù)。
表達(dá)式:
*/1 * * * *編寫python運(yùn)行腳本:
vi?log_generator.shpython?/home/hadoop/tpdata/log.pychmod u+x log_generator.sh
配置Crontab:?
crontab?-e*/1 * * * * /home/hadoop/tpdata/project/log_generator.sh
2.Flume實(shí)時收集日志信息
開發(fā)時選型:

編寫streaming_project.conf:
vi streaming_project.confexec-memory-logger.sources = exec-sourceexec-memory-logger.sinks = logger-sinkexec-memory-logger.channels = memory-channelexec-memory-logger.sources.exec-source.type = execexec-memory-logger.sources.exec-source.command = tail -F /home/hadoop/tpdata/project/logs/access.logexec-memory-logger.sources.exec-source.shell = /bin/sh -cexec-memory-logger.channels.memory-channel.type = memoryexec-memory-logger.sinks.logger-sink.type = loggerexec-memory-logger.sources.exec-source.channels = memory-channelexec-memory-logger.sinks.logger-sink.channel = memory-channel
flume-ng agent \--name exec-memory-logger \--conf $FLUME_HOME/conf \--conf-file /home/hadoop/tpdata/project/streaming_project.conf \-Dflume.root.logger=INFO,console

./zkServer.sh start./kafka-server-start.sh -daemon $KAFKA_HOME/config/server.propertiesbroker.id=0############################# Socket Server Settings #############################listeners=PLAINTEXT://:9092host.name=hadoop000advertised.host.name=192.168.1.9advertised.port=9092num.network.threads=3num.io.threads=8socket.send.buffer.bytes=102400socket.receive.buffer.bytes=102400socket.request.max.bytes=104857600############################# Log Basics #############################log.dirs=/home/hadoop/app/tmp/kafka-logsnum.partitions=1num.recovery.threads.per.data.dir=1############################# Log Retention Policy #############################log.retention.hours=168log.segment.bytes=1073741824log.retention.check.interval.ms=300000log.cleaner.enable=false############################# Zookeeper #############################zookeeper.connect=hadoop000:2181zookeeper.connection.timeout.ms=6000
kafka-console-consumer.sh --zookeeper hadoop000:2181 --topic streamingtopicvi streaming_project2.confexec-memory-kafka.sources = exec-sourceexec-memory-kafka.sinks = kafka-sinkexec-memory-kafka.channels = memory-channelexec-memory-kafka.sources.exec-source.type = execexec-memory-kafka.sources.exec-source.command = tail -F /home/hadoop/tpdata/project/logs/access.logexec-memory-kafka.sources.exec-source.shell = /bin/sh -cexec-memory-kafka.channels.memory-channel.type = memoryexec-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSinkexec-memory-kafka.sinks.kafka-sink.brokerList = hadoop000:9092exec-memory-kafka.sinks.kafka-sink.topic = streamingtopicexec-memory-kafka.sinks.kafka-sink.batchSize = 5exec-memory-kafka.sinks.kafka-sink.requiredAcks = 1exec-memory-kafka.sources.exec-source.channels = memory-channelexec-memory-kafka.sinks.kafka-sink.channel = memory-channel
flume-ng agent \--name exec-memory-kafka \--conf $FLUME_HOME/conf \--conf-file /home/hadoop/tpdata/project/streaming_project2.conf \-Dflume.root.logger=INFO,console

4.Spark Streaming對接Kafka對數(shù)據(jù)消費(fèi)

4.1 pom.xml:
4.0.0 com.taipark.spark sparktrain 1.0 2008 2.11.8 0.9.0.0 2.2.0 2.6.0-cdh5.7.0 1.2.0-cdh5.7.0 cloudera https://repository.cloudera.com/artifactory/cloudera-repos org.scala-lang scala-library ${scala.version} org.apache.hadoop hadoop-client ${hadoop.version} org.apache.hbase hbase-client ${hbase.version} org.apache.hbase hbase-server ${hbase.version} org.apache.spark spark-streaming_2.11 ${spark.version} org.apache.spark spark-streaming-kafka-0-8_2.11 2.2.0 org.apache.spark spark-streaming-flume_2.11 ${spark.version} org.apache.spark spark-streaming-flume-sink_2.11 ${spark.version} org.apache.commons commons-lang3 3.5 org.apache.spark spark-sql_2.11 ${spark.version} mysql mysql-connector-java 8.0.13 com.fasterxml.jackson.module jackson-module-scala_2.11 2.6.5 net.jpountz.lz4 lz4 1.3.0 org.apache.flume.flume-ng-clients flume-ng-log4jappender 1.6.0 src/main/scala src/test/scala org.scala-tools maven-scala-plugin compile testCompile ${scala.version} -target:jvm-1.5 org.apache.maven.plugins maven-eclipse-plugin true ch.epfl.lamp.sdt.core.scalabuilder ch.epfl.lamp.sdt.core.scalanature org.eclipse.jdt.launching.JRE_CONTAINER ch.epfl.lamp.sdt.launching.SCALA_CONTAINER org.scala-tools maven-scala-plugin ${scala.version}
4.2 連通Kafka
新建Scala文件——WebStatStreamingApp.scala,首先使用Direct模式連通Kafka:
package com.taipark.spark.projectimport kafka.serializer.StringDecoderimport org.apache.spark.SparkConfimport org.apache.spark.streaming.kafka.KafkaUtilsimport org.apache.spark.streaming.{Seconds, StreamingContext}/*** 使用Spark Streaming消費(fèi)Kafka的數(shù)據(jù)*/object WebStatStreamingApp {def main(args: Array[String]): Unit = {if(args.length != 2){System.err.println("Userage:WebStatStreamingApp"); System.exit(1);}val Array(brokers,topics) = argsval sparkConf = new SparkConf().setAppName("WebStatStreamingApp").setMaster("local[2]")val ssc = new StreamingContext(sparkConf,Seconds(60))val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)val topicSet = topics.split(",").toSetval messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicSet)messages.map(_._2).count().print()ssc.start()ssc.awaitTermination()}}
hadoop000:9092 streamingtopic在本地測試是否連通:

連通成功,可以開始編寫業(yè)務(wù)代碼完成數(shù)據(jù)清洗(ETL)。
4.3 ETL
新建工具類DateUtils.scala:
package com.taipark.spark.project.utilsimport java.util.Dateimport org.apache.commons.lang3.time.FastDateFormat/*** 日期時間工具類*/object DateUtils {val YYYYMMDDHHMMSS_FORMAT = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss")val TARGET_FORMAT = FastDateFormat.getInstance("yyyyMMddHHmmss")def getTime(time:String)={YYYYMMDDHHMMSS_FORMAT.parse(time).getTime}def parseToMinute(time:String)={TARGET_FORMAT.format(new Date(getTime(time)))}def main(args: Array[String]): Unit = {// println(parseToMinute("2020-03-10 15:00:05"))}}
package com.taipark.spark.project.domian/*** 清洗后的日志信息*/case class ClickLog(ip:String,time:String,courseId:Int,statusCode:Int,referer:String)
修改WebStatStreamingApp.scala:
package com.taipark.spark.project.sparkimport com.taipark.spark.project.domian.ClickLogimport com.taipark.spark.project.utils.DateUtilsimport kafka.serializer.StringDecoderimport org.apache.spark.SparkConfimport org.apache.spark.streaming.kafka.KafkaUtilsimport org.apache.spark.streaming.{Seconds, StreamingContext}/*** 使用Spark Streaming消費(fèi)Kafka的數(shù)據(jù)*/object WebStatStreamingApp {def main(args: Array[String]): Unit = {if(args.length != 2){System.err.println("Userage:WebStatStreamingApp"); System.exit(1);}val Array(brokers,topics) = argsval sparkConf = new SparkConf().setAppName("WebStatStreamingApp").setMaster("local[2]")val ssc = new StreamingContext(sparkConf,Seconds(60))val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)val topicSet = topics.split(",").toSetval messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicSet)//messages.map(_._2).count().print()//ETL// 30.163.55.7 2020-03-10 14:32:01 "GET /class/112.html HTTP/1.1" 404 http://www.baidu.com/s?wd=Hadoopval logs = messages.map(_._2)val cleanData = logs.map(line => {val infos = line.split("\t")//infos(2) = "GET /class/112.html HTTP/1.1"val url = infos(2).split(" ")(1)var courseId = 0//拿到課程編號if(url.startsWith("/class")){val courseIdHTML = url.split("/")(2)courseId = courseIdHTML.substring(0,courseIdHTML.lastIndexOf(".")).toInt}ClickLog(infos(0),DateUtils.parseToMinute(infos(1)),courseId,infos(3).toInt,infos(4))}).filter(clicklog => clicklog.courseId != 0)cleanData.print()ssc.start()ssc.awaitTermination()}}
run起來測試一下:

ETL完成。
4.4 功能一:到現(xiàn)在為止某網(wǎng)站的訪問量
使用數(shù)據(jù)庫來存儲統(tǒng)計結(jié)果,可視化前端根據(jù)yyyyMMdd courseid把數(shù)據(jù)庫里的結(jié)果展示出來。
選擇HBASE作為數(shù)據(jù)庫。要啟動HDFS與Zookeeper。
啟動HDFS:
./start-dfs.sh./start-hbase.sh./hbase shelllist
create 'web_course_clickcount','info'hbase(main):008:0> desc 'web_course_clickcount'Table web_course_clickcount is ENABLEDweb_course_clickcountCOLUMN FAMILIES DESCRIPTION{NAME => 'info', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}1 row(s) in 0.1650 seconds
day_courseid使用Scala來操作HBASE:
新建網(wǎng)頁點(diǎn)擊數(shù)實(shí)體類 CourseClickCount.scala:
package com.taipark.spark.project.domian/*** 課程網(wǎng)頁點(diǎn)擊數(shù)* @param day_course HBASE中的rowkey* @param click_count 對應(yīng)的點(diǎn)擊總數(shù)*/case class CourseClickCount(day_course:String,click_count:Long)
package com.taipark.spark.project.daoimport com.taipark.spark.project.domian.CourseClickCountimport scala.collection.mutable.ListBufferobject CourseClickCountDAO {val tableName = "web_course_clickcount"val cf = "info"val qualifer = "click_count"/*** 保存數(shù)據(jù)到HBASE* @param list*/def save(list:ListBuffer[CourseClickCount]): Unit ={}/*** 根據(jù)rowkey查詢值* @param day_course* @return*/def count(day_course:String):Long={0l}}
利用Java實(shí)現(xiàn)HBaseUtils打通其與HBASE:
package com.taipark.spark.project.utils;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.hbase.client.HBaseAdmin;import org.apache.hadoop.hbase.client.HTable;import org.apache.hadoop.hbase.client.Put;import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;/*** HBase操作工具類:Java工具類采用單例模式封裝*/public class HBaseUtils {HBaseAdmin admin = null;Configuration configuration = null;//私有構(gòu)造方法(單例模式)private HBaseUtils(){configuration = new Configuration();configuration.set("hbase.zookeeper.quorum","hadoop000:2181");configuration.set("hbase.rootdir","hdfs://hadoop000:8020/hbase");try {admin = new HBaseAdmin(configuration);} catch (IOException e) {e.printStackTrace();}}private static HBaseUtils instance = null;public static synchronized HBaseUtils getInstance(){if(instance == null){instance = new HBaseUtils();}return instance;}//根據(jù)表名獲取HTable實(shí)例public HTable getTable(String tableName){HTable table = null;try {table = new HTable(configuration,tableName);} catch (IOException e) {e.printStackTrace();}return table;}/*** 添加一條記錄到HBASE表* @param tableName 表名* @param rowkey 表rowkey* @param cf 表的columnfamily* @param column 表的列* @param value 寫入HBASE的值*/public void put(String tableName,String rowkey,String cf,String column,String value){HTable table = getTable(tableName);Put put = new Put(Bytes.toBytes(rowkey));put.add(Bytes.toBytes(cf),Bytes.toBytes(column),Bytes.toBytes(value));try {table.put(put);} catch (IOException e) {e.printStackTrace();}}public static void main(String[] args) {// HTable hTable = HBaseUtils.getInstance().getTable("web_course_clickcount");// System.out.println(hTable.getName().getNameAsString());String tableName = "web_course_clickcount";String rowkey = "20200310_88";String cf = "info";String column = "click_count";String value = "2";HBaseUtils.getInstance().put(tableName,rowkey,cf,column,value);}}
測試運(yùn)行:

測試工具類成功后繼續(xù)編寫DAO的代碼:
package com.taipark.spark.project.daoimport com.taipark.spark.project.domian.CourseClickCountimport com.taipark.spark.project.utils.HBaseUtilsimport org.apache.hadoop.hbase.client.Getimport org.apache.hadoop.hbase.util.Bytesimport scala.collection.mutable.ListBufferobject CourseClickCountDAO {val tableName = "web_course_clickcount"val cf = "info"val qualifer = "click_count"/*** 保存數(shù)據(jù)到HBASE* @param list*/def save(list:ListBuffer[CourseClickCount]): Unit ={val table = HBaseUtils.getInstance().getTable(tableName)for(ele <- list){table.incrementColumnValue(Bytes.toBytes(ele.day_course),Bytes.toBytes(cf),Bytes.toBytes(qualifer),ele.click_count)}}/*** 根據(jù)rowkey查詢值* @param day_course* @return*/def count(day_course:String):Long={val table = HBaseUtils.getInstance().getTable(tableName)val get = new Get(Bytes.toBytes(day_course))val value = table.get(get).getValue(cf.getBytes,qualifer.getBytes)if (value == null){0L}else{Bytes.toLong(value)}}def main(args: Array[String]): Unit = {val list = new ListBuffer[CourseClickCount]list.append(CourseClickCount("2020311_8",8))list.append(CourseClickCount("2020311_9",9))list.append(CourseClickCount("2020311_10",1))list.append(CourseClickCount("2020311_2",15))save(list)}}
scan 'web_course_clickcount'
package com.taipark.spark.project.sparkimport com.taipark.spark.project.dao.CourseClickCountDAOimport com.taipark.spark.project.domian.{ClickLog, CourseClickCount}import com.taipark.spark.project.utils.DateUtilsimport kafka.serializer.StringDecoderimport org.apache.spark.SparkConfimport org.apache.spark.streaming.kafka.KafkaUtilsimport org.apache.spark.streaming.{Seconds, StreamingContext}import scala.collection.mutable.ListBuffer/*** 使用Spark Streaming消費(fèi)Kafka的數(shù)據(jù)*/object WebStatStreamingApp {def main(args: Array[String]): Unit = {if(args.length != 2){System.err.println("Userage:WebStatStreamingApp"); System.exit(1);}val Array(brokers,topics) = argsval sparkConf = new SparkConf().setAppName("WebStatStreamingApp").setMaster("local[2]")val ssc = new StreamingContext(sparkConf,Seconds(60))val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)val topicSet = topics.split(",").toSetval messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicSet)//messages.map(_._2).count().print()//ETL// 30.163.55.7 2020-03-10 14:32:01 "GET /class/112.html HTTP/1.1" 404 http://www.baidu.com/s?wd=Hadoopval logs = messages.map(_._2)val cleanData = logs.map(line => {val infos = line.split("\t")//infos(2) = "GET /class/112.html HTTP/1.1"val url = infos(2).split(" ")(1)var courseId = 0//拿到課程編號if(url.startsWith("/class")){val courseIdHTML = url.split("/")(2)courseId = courseIdHTML.substring(0,courseIdHTML.lastIndexOf(".")).toInt}ClickLog(infos(0),DateUtils.parseToMinute(infos(1)),courseId,infos(3).toInt,infos(4))}).filter(clicklog => clicklog.courseId != 0)// cleanData.print()cleanData.map(x => {//HBase rowkey設(shè)計:20200311_9((x.time.substring(0,8)) + "_" + x.courseId,1)}).reduceByKey(_+_).foreachRDD(rdd =>{rdd.foreachPartition(partitionRecords =>{val list = new ListBuffer[CourseClickCount]partitionRecords.foreach(pair =>{list.append(CourseClickCount(pair._1,pair._2))})CourseClickCountDAO.save(list)})})ssc.start()ssc.awaitTermination()}}
測試:

4.5 功能二:到現(xiàn)在為止某網(wǎng)站的搜索引擎引流訪問量
HBASE表設(shè)計:
create 'web_course_search_clickcount','info'day_search_1package com.taipark.spark.project.domian/*** 網(wǎng)站從搜索引擎過來的點(diǎn)擊數(shù)實(shí)體類* @param day_search_course* @param click_count*/case class CourseSearchClickCount (day_search_course:String,click_count:Long)
package com.taipark.spark.project.daoimport com.taipark.spark.project.domian.{CourseClickCount, CourseSearchClickCount}import com.taipark.spark.project.utils.HBaseUtilsimport org.apache.hadoop.hbase.client.Getimport org.apache.hadoop.hbase.util.Bytesimport scala.collection.mutable.ListBufferobject CourseSearchClickCountDAO {val tableName = "web_course_search_clickcount"val cf = "info"val qualifer = "click_count"/*** 保存數(shù)據(jù)到HBASE* @param list*/def save(list:ListBuffer[CourseSearchClickCount]): Unit ={val table = HBaseUtils.getInstance().getTable(tableName)for(ele <- list){table.incrementColumnValue(Bytes.toBytes(ele.day_search_course),Bytes.toBytes(cf),Bytes.toBytes(qualifer),ele.click_count)}}/*** 根據(jù)rowkey查詢值* @param day_search_course* @return*/def count(day_search_course:String):Long={val table = HBaseUtils.getInstance().getTable(tableName)val get = new Get(Bytes.toBytes(day_search_course))val value = table.get(get).getValue(cf.getBytes,qualifer.getBytes)if (value == null){0L}else{Bytes.toLong(value)}}def main(args: Array[String]): Unit = {val list = new ListBuffer[CourseSearchClickCount]list.append(CourseSearchClickCount("2020311_www.baidu.com_8",8))list.append(CourseSearchClickCount("2020311_cn.bing.com_9",9))save(list)println(count("020311_www.baidu.com_8"))}}
測試:

在Spark Streaming中寫到HBASE:
package com.taipark.spark.project.sparkimport com.taipark.spark.project.dao.{CourseClickCountDAO, CourseSearchClickCountDAO}import com.taipark.spark.project.domian.{ClickLog, CourseClickCount, CourseSearchClickCount}import com.taipark.spark.project.utils.DateUtilsimport kafka.serializer.StringDecoderimport org.apache.spark.SparkConfimport org.apache.spark.streaming.kafka.KafkaUtilsimport org.apache.spark.streaming.{Seconds, StreamingContext}import scala.collection.mutable.ListBuffer/*** 使用Spark Streaming消費(fèi)Kafka的數(shù)據(jù)*/object WebStatStreamingApp {def main(args: Array[String]): Unit = {if(args.length != 2){System.err.println("Userage:WebStatStreamingApp"); System.exit(1);}val Array(brokers,topics) = argsval sparkConf = new SparkConf().setAppName("WebStatStreamingApp").setMaster("local[2]")val ssc = new StreamingContext(sparkConf,Seconds(60))val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)val topicSet = topics.split(",").toSetval messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicSet)//messages.map(_._2).count().print()//ETL// 30.163.55.7 2020-03-10 14:32:01 "GET /class/112.html HTTP/1.1" 404 http://www.baidu.com/s?wd=Hadoopval logs = messages.map(_._2)val cleanData = logs.map(line => {val infos = line.split("\t")//infos(2) = "GET /class/112.html HTTP/1.1"val url = infos(2).split(" ")(1)var courseId = 0//拿到課程編號if(url.startsWith("/class")){val courseIdHTML = url.split("/")(2)courseId = courseIdHTML.substring(0,courseIdHTML.lastIndexOf(".")).toInt}ClickLog(infos(0),DateUtils.parseToMinute(infos(1)),courseId,infos(3).toInt,infos(4))}).filter(clicklog => clicklog.courseId != 0)// cleanData.print()//需求一cleanData.map(x => {//HBase rowkey設(shè)計:20200311_9((x.time.substring(0,8)) + "_" + x.courseId,1)}).reduceByKey(_+_).foreachRDD(rdd =>{rdd.foreachPartition(partitionRecords =>{val list = new ListBuffer[CourseClickCount]partitionRecords.foreach(pair =>{list.append(CourseClickCount(pair._1,pair._2))})CourseClickCountDAO.save(list)})})//需求二cleanData.map(x =>{//http://www.baidu.com/s?wd=Spark+Streamingval referer = x.referer.replaceAll("http://","/")//http:/www.baidu.com/s?wd=Spark+Streamingval splits = referer.split("/")var host = ""//splits.length == 1 => -if(splits.length > 2){host = splits(1)}(host,x.courseId,x.time)}).filter(_._1 != "").map(x =>{(x._3.substring(0,8) + "_" + x._1 + "_" + x._2,1)}).reduceByKey(_+_).foreachRDD(rdd =>{rdd.foreachPartition(partitionRecords =>{val list = new ListBuffer[CourseSearchClickCount]partitionRecords.foreach(pair =>{list.append(CourseSearchClickCount(pair._1,pair._2))})CourseSearchClickCountDAO.save(list)})})ssc.start()ssc.awaitTermination()}}
測試:

5.生產(chǎn)環(huán)境部署
不要硬編碼,把setAppName和setMaster注釋掉:
val sparkConf = new SparkConf()// .setAppName("WebStatStreamingApp")// .setMaster("local[2]")

./spark-submit \--master local[5] \--name WebStatStreamingApp \--class com.taipark.spark.project.spark.WebStatStreamingApp \/home/hadoop/tplib/sparktrain-1.0.jar \hadoop000:9092 streamingtopic
報錯:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/spark/streaming/kafka/KafkaUtils$
./spark-submit \--master local[5] \--name WebStatStreamingApp \--class com.taipark.spark.project.spark.WebStatStreamingApp \--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \/home/hadoop/tplib/sparktrain-1.0.jar \hadoop000:9092 streamingtopic
報錯:
java.lang.NoClassDefFoundError: org/apache/hadoop/hbase/client/HBaseAdmin
修改,增加HBASE的jar包:
./spark-submit \--master local[5] \--name WebStatStreamingApp \--class com.taipark.spark.project.spark.WebStatStreamingApp \--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \--jars $(echo /home/hadoop/app/hbase-1.2.0-cdh5.7.0/lib/*.jar | tr ' ' ',') \/home/hadoop/tplib/sparktrain-1.0.jar \hadoop000:9092 streamingtopic
運(yùn)行:

后臺運(yùn)行成功
6.Spring Boot開發(fā)
6.1 測試ECharts
新建一個Spring Boot項目,下載ECharts,利用其在線編譯,獲得echarts.min.js,放在resources/static/js下
pox.xml添加一個依賴:
org.springframework.boot spring-boot-starter-thymeleaf
test
package com.taipark.spark.web;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RequestMethod;import org.springframework.web.bind.annotation.RestController;import org.springframework.web.servlet.ModelAndView;/*** 測試*/@RestControllerpublic class HelloBoot {@RequestMapping(value = "/hello",method = RequestMethod.GET)public String sayHello(){return "HelloWorld!";}@RequestMapping(value = "/first",method = RequestMethod.GET)public ModelAndView firstDemo(){return new ModelAndView("test");}}
測試一下:

成功
6.2 動態(tài)實(shí)現(xiàn)ECharts
添加repository:
cloudera https://repository.cloudera.com/artifactory/cloudera-repos/
org.apache.hbase hbase-client 1.2.0-cdh5.7.0
package com.taipark.spark.web.utils;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.hbase.client.*;import org.apache.hadoop.hbase.filter.Filter;import org.apache.hadoop.hbase.filter.PrefixFilter;import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;import java.util.HashMap;import java.util.Map;public class HBaseUtils {HBaseAdmin admin = null;Configuration configuration = null;//私有構(gòu)造方法(單例模式)private HBaseUtils(){configuration = new Configuration();configuration.set("hbase.zookeeper.quorum","hadoop000:2181");configuration.set("hbase.rootdir","hdfs://hadoop000:8020/hbase");try {admin = new HBaseAdmin(configuration);} catch (IOException e) {e.printStackTrace();}}private static HBaseUtils instance = null;public static synchronized HBaseUtils getInstance(){if(instance == null){instance = new HBaseUtils();}return instance;}//根據(jù)表名獲取HTable實(shí)例public HTable getTable(String tableName){HTable table = null;try {table = new HTable(configuration,tableName);} catch (IOException e) {e.printStackTrace();}return table;}/*** 根據(jù)表名和輸入條件獲取HBASE的記錄數(shù)* @param tableName* @param dayCourse* @return*/public Mapquery(String tableName,String condition) throws Exception{ Mapmap = new HashMap<>(); HTable table = getTable(tableName);String cf ="info";String qualifier = "click_count";Scan scan = new Scan();Filter filter = new PrefixFilter(Bytes.toBytes(condition));scan.setFilter(filter);ResultScanner rs = table.getScanner(scan);for(Result result:rs){String row = Bytes.toString(result.getRow());long clickCount = Bytes.toLong(result.getValue(cf.getBytes(), qualifier.getBytes()));map.put(row,clickCount);}return map;}public static void main(String[] args) throws Exception{Mapmap = HBaseUtils.getInstance().query("web_course_clickcount", "20200311"); for(Map.Entryentry:map.entrySet()){ System.out.println(entry.getKey() + ":" + entry.getValue());}}}
測試通過:

定義網(wǎng)頁訪問數(shù)量Bean:
package com.taipark.spark.web.domain;import org.springframework.stereotype.Component;/*** 網(wǎng)頁訪問數(shù)量實(shí)體類*/@Componentpublic class CourseClickCount {private String name;private long value;public String getName() {return name;}public void setName(String name) {this.name = name;}public long getValue() {return value;}public void setValue(long value) {this.value = value;}}
package com.taipark.spark.web.dao;import com.taipark.spark.web.domain.CourseClickCount;import com.taipark.spark.web.utils.HBaseUtils;import org.springframework.stereotype.Component;import java.util.ArrayList;import java.util.List;import java.util.Map;/*** 網(wǎng)頁訪問數(shù)量數(shù)據(jù)訪問層*/@Componentpublic class CourseClickDAO {/*** 根據(jù)天查詢* @param day* @return* @throws Exception*/public Listquery(String day) throws Exception{ Listlist = new ArrayList<>(); //去HBase表中根據(jù)day獲取對應(yīng)網(wǎng)頁的訪問量Mapmap = HBaseUtils.getInstance().query("web_course_clickcount", "20200311"); for(Map.Entryentry:map.entrySet()){ CourseClickCount model = new CourseClickCount();model.setName(entry.getKey());model.setValue(entry.getValue());list.add(model);}return list;}public static void main(String[] args) throws Exception{CourseClickDAO dao = new CourseClickDAO();Listlist = dao.query( "20200311"); for(CourseClickCount model:list){System.out.println(model.getName() + ":" + model.getValue());}}}
net.sf.json-lib json-lib 2.4 jdk15
package com.taipark.spark.web.spark;import com.taipark.spark.web.dao.CourseClickDAO;import com.taipark.spark.web.domain.CourseClickCount;import net.sf.json.JSONArray;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RequestMethod;import org.springframework.web.bind.annotation.ResponseBody;import org.springframework.web.bind.annotation.RestController;import org.springframework.web.servlet.ModelAndView;import java.util.HashMap;import java.util.List;import java.util.Map;/*** web層*/@RestControllerpublic class WebStatApp {private static Mapcourses = new HashMap<>(); static {courses.put("112","某些外國人對中國有多不了解?");courses.put("128","你認(rèn)為有哪些失敗的建筑?");courses.put("145","為什么人類想象不出四維空間?");courses.put("146","有什么一眼看上去很舒服的頭像?");courses.put("131","男朋友心情不好時女朋友該怎么辦?");courses.put("130","小白如何從零開始運(yùn)營一個微信公眾號?");courses.put("821","為什么有人不喜歡極簡主義?");courses.put("825","有哪些書看完后會讓人很后悔沒有早看到?");}// @Autowired// CourseClickDAO courseClickDAO;// @RequestMapping(value = "/course_clickcount_dynamic",method = RequestMethod.GET)// public ModelAndView courseClickCount() throws Exception{// ModelAndView view = new ModelAndView("index");// Listlist = courseClickDAO.query("20200311"); //// for(CourseClickCount model:list){// model.setName(courses.get(model.getName().substring(9)));// }// JSONArray json = JSONArray.fromObject(list);//// view.addObject("data_json",json);//// return view;// }@AutowiredCourseClickDAO courseClickDAO;@RequestMapping(value = "/course_clickcount_dynamic",method = RequestMethod.POST)@ResponseBodypublic ListcourseClickCount() throws Exception{ ModelAndView view = new ModelAndView("index");Listlist = courseClickDAO.query("20200311"); for(CourseClickCount model:list){model.setName(courses.get(model.getName().substring(9)));}return list;}@RequestMapping(value = "/echarts",method = RequestMethod.GET)public ModelAndView echarts(){return new ModelAndView("echarts");}}
web_stat
測試一下:

6.3 Spring的服務(wù)器部署
Maven打包并上傳服務(wù)器
java?-jar?web-0.0.1.jar
--end--
掃描下方二維碼 添加好友,備注【交流】 可私聊交流,也可進(jìn)資源豐富學(xué)習(xí)群
