<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          機器人視覺的九大挑戰(zhàn)

          共 2340字,需瀏覽 5分鐘

           ·

          2021-03-08 14:01

          點擊上方小白學視覺”,選擇加"星標"或“置頂

          重磅干貨,第一時間送達

          本文轉(zhuǎn)自:新機器視覺

          機器人視覺解決方案是我們實現(xiàn)機器人視野的幾大挑戰(zhàn)。即便變得越來越簡單易用,還是有一些棘手的問題。很多因素影響機器人在環(huán)境中的視覺,任務設置和工作場所。這里有9個總結(jié)出來的機器人視覺挑戰(zhàn):

          照明


          如果有過在低光照下拍攝數(shù)碼照片的經(jīng)驗,就會知道照明至關重要。糟糕的照明會毀掉一切。成像傳感器不像人眼那樣適應性強或敏感。如果照明類型錯誤,視覺傳感器將無法可靠地檢測到物體。

          有各種克服照明挑戰(zhàn)的方法。一種方法是將有源照明結(jié)合到視覺傳感器本身中。其他解決方案包括使用紅外照明,環(huán)境中的固定照明或使用其他形式的光的技術,例如激光。

          變形或鉸接


          球是用計算機視覺設置來檢測的簡單對象。你可能只是檢測它的圓形輪廓,也許使用模板匹配算法。但是,如果球被壓扁,它會改變形狀,同樣的方法將不再起作用。這是變形。它會導致一些機器人視覺技術相當大的問題。

          鉸接類似,是指由可移動關節(jié)引起的變形。例如,當您在肘部彎曲手臂時,手臂的形狀會發(fā)生變化。各個鏈接(骨骼)保持相同的形狀,但輪廓變形。由于許多視覺算法使用形狀輪廓,因此清晰度使得物體識別更加困難。

          職位和方向


          機器人視覺系統(tǒng)最常見的功能是檢測已知物體的位置和方向。因此,大多數(shù)集成視覺解決方案通常都克服了這兩者面臨的挑戰(zhàn)。

          只要整個物體可以在攝像機圖像內(nèi)被查看,檢測物體的位置通常是直截了當?shù)?。許多系統(tǒng)對于對象方向的變化也是強健的。但是,并不是所有的方向都是平等的。雖然檢測沿一個軸旋轉(zhuǎn)的物體是足夠簡單的,但是檢測物體何時3D旋轉(zhuǎn)則更為復雜。

          背景


          圖像的背景對物體檢測的容易程度有很大的影響。想象一個極端的例子,對象被放置在一張紙上,在該紙上打印同一對象的圖像。在這種情況下,機器人視覺設置可能不可能確定哪個是真實的物體。

          完美的背景是空白的,并提供與檢測到的物體良好的對比。它的確切屬性將取決于正在使用的視覺檢測算法。如果使用邊緣檢測器,那么背景不應該包含清晰的線條。背景的顏色和亮度也應該與物體的顏色和亮度不同。

          閉塞


          遮擋意味著物體的一部分被遮住了。在前面的四個挑戰(zhàn)中,整個對象出現(xiàn)在相機圖像中。遮擋是不同的,因為部分對象丟失。視覺系統(tǒng)顯然不能檢測到圖像中不存在的東西。

          有各種各樣的東西可能會導致遮擋,包括:其他物體,機器人的部分或相機的不良位置??朔趽醯姆椒ㄍǔI婕皩ο蟮目梢姴糠峙c其已知模型進行匹配,并假定對象的隱藏部分存在。

          比例


          在某些情況下,人眼很容易被尺度上的差異所欺騙。機器人視覺系統(tǒng)也可能被他們弄糊涂了。想象一下,你有兩個完全相同的物體,只是一個比另一個大。想象一下,您正在使用固定的2D視覺設置,物體的大小決定了它與機器人的距離。如果您訓練系統(tǒng)識別較小的物體,則會錯誤地檢測到兩個物體是相同的,并且較大的物體更接近相機。

          尺度的另一個問題,也許不那么明顯,就是像素值的問題。如果將機器人相機放置得很遠,則圖像中的對象將由較少的像素表示。當有更多的像素代表對象時,圖像處理算法會更好地工作,但有一些例外。

          照相機放置


          不正確的相機位置可能會導致以前出現(xiàn)過的任何問題,所以重要的是要正確使用它。嘗試將照相機放置在光線充足的區(qū)域,以便在沒有變形的情況下盡可能清楚地看到物體,盡可能靠近物體而不會造成遮擋。照相機和觀看表面之間不應有干擾的背景或其他物體。

          運動


          移動有時會導致計算機視覺設置出現(xiàn)問題,特別是在圖像中出現(xiàn)模糊時。例如,這可能發(fā)生在快速移動的傳送帶上的物體上。數(shù)字成像傳感器在短時間內(nèi)捕獲圖像,但不會瞬間捕獲整個圖像。如果一個物體在捕捉過程中移動太快,將導致圖像模糊。我們的眼睛可能不會注意到視頻中的模糊,但算法會。當有清晰的靜態(tài)圖像時,機器人視覺效果最佳。

          期望


          與視覺算法的技術方面相比,最后的挑戰(zhàn)更多地涉及到您的視覺設置方法。機器人視野面臨的最大挑戰(zhàn)之一就是工作人員對于視覺系統(tǒng)能提供什么不切實際的期望。通過確保期望符合技術的能力,您將從技術中獲得最大收益。您可以通過確保員工接受關于視覺系統(tǒng)的教育來實現(xiàn)這一點。

          下載1:OpenCV-Contrib擴展模塊中文版教程
          在「小白學視覺」公眾號后臺回復:擴展模塊中文教程,即可下載全網(wǎng)第一份OpenCV擴展模塊教程中文版,涵蓋擴展模塊安裝、SFM算法、立體視覺、目標跟蹤、生物視覺、超分辨率處理等二十多章內(nèi)容。

          下載2:Python視覺實戰(zhàn)項目52講
          小白學視覺公眾號后臺回復:Python視覺實戰(zhàn)項目,即可下載包括圖像分割、口罩檢測、車道線檢測、車輛計數(shù)、添加眼線、車牌識別、字符識別、情緒檢測、文本內(nèi)容提取、面部識別等31個視覺實戰(zhàn)項目,助力快速學校計算機視覺。

          下載3:OpenCV實戰(zhàn)項目20講
          小白學視覺公眾號后臺回復:OpenCV實戰(zhàn)項目20講即可下載含有20個基于OpenCV實現(xiàn)20個實戰(zhàn)項目,實現(xiàn)OpenCV學習進階。

          交流群


          歡迎加入公眾號讀者群一起和同行交流,目前有SLAM、三維視覺、傳感器、自動駕駛、計算攝影、檢測、分割、識別、醫(yī)學影像、GAN、算法競賽等微信群(以后會逐漸細分),請掃描下面微信號加群,備注:”昵稱+學校/公司+研究方向“,例如:”張三 + 上海交大 + 視覺SLAM“。請按照格式備注,否則不予通過。添加成功后會根據(jù)研究方向邀請進入相關微信群。請勿在群內(nèi)發(fā)送廣告,否則會請出群,謝謝理解~


          瀏覽 22
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  午夜精品久久久久久久 | 中文字幕日本无码 | 一区二区三区国产 | 久热免费在线视频 | 亚洲无码人妻 |