【項(xiàng)目實(shí)踐】車距+車輛+車道線+行人檢測項(xiàng)目實(shí)踐
點(diǎn)擊上方“小白學(xué)視覺”,選擇加"星標(biāo)"或“置頂”
重磅干貨,第一時(shí)間送達(dá)
本文轉(zhuǎn)自 | AI算法與圖像處理
1、項(xiàng)目流程的簡介
項(xiàng)目的主題框架使用為Keras+OpenCV的形式實(shí)現(xiàn),而模型的選擇為基于DarkNet19的YOLO V2模型,權(quán)重為基于COCO2014訓(xùn)練的數(shù)據(jù)集,而車道線的檢測是基于OpenCV的傳統(tǒng)方法實(shí)現(xiàn)的。
2、項(xiàng)目主題部分
2.1、YOLO V2模型
YoloV2的結(jié)構(gòu)是比較簡單的,這里要注意的地方有兩個(gè):
1.輸出的是batchsize x (5+20)*5 x W x H的feature map;
2.這里為了提取細(xì)節(jié),加了一個(gè) Fine-Grained connection layer,將前面的細(xì)節(jié)信息匯聚到了后面的層當(dāng)中。

YOLOv2結(jié)構(gòu)示意圖
2.1.1、DarkNet19模型
YOLOv2采用了一個(gè)新的基礎(chǔ)模型(特征提取器),稱為Darknet-19,包括19個(gè)卷積層和5個(gè)maxpooling層;Darknet-19與VGG16模型設(shè)計(jì)原則是一致的,主要采用3*3卷積,采用 2*2的maxpooling層之后,特征圖維度降低2倍,而同時(shí)將特征圖的channles增加兩倍。
與NIN(Network in Network)類似,Darknet-19最終采用global avgpooling做預(yù)測,并且在3*3卷積之間使用1*1卷積來壓縮特征圖channles以降低模型計(jì)算量和參數(shù)。
Darknet-19每個(gè)卷積層后面同樣使用了batch norm層以加快收斂速度,降低模型過擬合。在ImageNet分類數(shù)據(jù)集上,Darknet-19的top-1準(zhǔn)確度為72.9%,top-5準(zhǔn)確度為91.2%,但是模型參數(shù)相對小一些。使用Darknet-19之后,YOLOv2的mAP值沒有顯著提升,但是計(jì)算量卻可以減少約33%。

"""Darknet19 Model Defined in Keras."""import functoolsfrom functools import partialfrom keras.layers import Conv2D, MaxPooling2Dfrom keras.layers.advanced_activations import LeakyReLUfrom keras.layers.normalization import BatchNormalizationfrom keras.models import Modelfrom keras.regularizers import l2from ..utils import compose# Partial wrapper for Convolution2D with static default argument._DarknetConv2D = partial(Conv2D, padding='same')def DarknetConv2D(*args, **kwargs):"""Wrapper to set Darknet weight regularizer for Convolution2D."""darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)}darknet_conv_kwargs.update(kwargs)return _DarknetConv2D(*args, **darknet_conv_kwargs)def DarknetConv2D_BN_Leaky(*args, **kwargs):"""Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""no_bias_kwargs = {'use_bias': False}no_bias_kwargs.update(kwargs)return compose(DarknetConv2D(*args, **no_bias_kwargs),BatchNormalization(),LeakyReLU(alpha=0.1))def bottleneck_block(outer_filters, bottleneck_filters):"""Bottleneck block of 3x3, 1x1, 3x3 convolutions."""return compose(DarknetConv2D_BN_Leaky(outer_filters, (3, 3)),DarknetConv2D_BN_Leaky(bottleneck_filters, (1, 1)),DarknetConv2D_BN_Leaky(outer_filters, (3, 3)))def bottleneck_x2_block(outer_filters, bottleneck_filters):"""Bottleneck block of 3x3, 1x1, 3x3, 1x1, 3x3 convolutions."""return compose(bottleneck_block(outer_filters, bottleneck_filters),DarknetConv2D_BN_Leaky(bottleneck_filters, (1, 1)),DarknetConv2D_BN_Leaky(outer_filters, (3, 3)))def darknet_body():"""Generate first 18 conv layers of Darknet-19."""return compose(DarknetConv2D_BN_Leaky(32, (3, 3)),MaxPooling2D(),DarknetConv2D_BN_Leaky(64, (3, 3)),MaxPooling2D(),bottleneck_block(128, 64),MaxPooling2D(),bottleneck_block(256, 128),MaxPooling2D(),bottleneck_x2_block(512, 256),MaxPooling2D(),bottleneck_x2_block(1024, 512))def darknet19(inputs):"""Generate Darknet-19 model for Imagenet classification."""body = darknet_body()(inputs)logits = DarknetConv2D(1000, (1, 1), activation='softmax')(body)return Model(inputs, logits)
2.1.2、Fine-Grained Features
YOLOv2的輸入圖片大小為416*416,經(jīng)過5次maxpooling之后得到13*13大小的特征圖,并以此特征圖采用卷積做預(yù)測。13*13大小的特征圖對檢測大物體是足夠了,但是對于小物體還需要更精細(xì)的特征圖(Fine-Grained Features)。因此SSD使用了多尺度的特征圖來分別檢測不同大小的物體,前面更精細(xì)的特征圖可以用來預(yù)測小物體。
YOLOv2提出了一種passthrough層來利用更精細(xì)的特征圖。YOLOv2所利用的Fine-Grained Features是26*26大小的特征圖(最后一個(gè)maxpooling層的輸入),對于Darknet-19模型來說就是大小為 26*26*512的特征圖。passthrough層與ResNet網(wǎng)絡(luò)的shortcut類似,以前面更高分辨率的特征圖為輸入,然后將其連接到后面的低分辨率特征圖上。前面的特征圖維度是后面的特征圖的2倍,passthrough層抽取前面層的每個(gè)2*2的局部區(qū)域,然后將其轉(zhuǎn)化為channel維度,對于26*26*512的特征圖,經(jīng)passthrough層處理之后就變成了13*13*2048的新特征圖(特征圖大小降低4倍,而channles增加4倍,圖6為一個(gè)實(shí)例),這樣就可以與后面的13*13*1024特征圖連接在一起形成13*13*3072大小的特征圖,然后在此特征圖基礎(chǔ)上卷積做預(yù)測。

passthrough層實(shí)例
另外,作者在后期的實(shí)現(xiàn)中借鑒了ResNet網(wǎng)絡(luò),不是直接對高分辨特征圖處理,而是增加了一個(gè)中間卷積層,先采用64個(gè) 1*1卷積核進(jìn)行卷積,然后再進(jìn)行passthrough處理,這樣26*26*512的特征圖得到13*13*256的特征圖。
這算是實(shí)現(xiàn)上的一個(gè)小細(xì)節(jié)。使用Fine-Grained Features之后YOLOv2的性能有1%的提升。
2.1.3、Dimension Clusters
在Faster R-CNN和SSD中,先驗(yàn)框的維度(長和寬)都是手動設(shè)定的,帶有一定的主觀性。如果選取的先驗(yàn)框維度比較合適,那么模型更容易學(xué)習(xí),從而做出更好的預(yù)測。因此,YOLOv2采用k-means聚類方法對訓(xùn)練集中的邊界框做了聚類分析。
因?yàn)樵O(shè)置先驗(yàn)框的主要目的是為了使得預(yù)測框與ground truth的IOU更好,所以聚類分析時(shí)選用box與聚類中心box之間的IOU值作為距離指標(biāo)。

數(shù)據(jù)集VOC和COCO上的邊界框聚類分析結(jié)果
2.1.4、YOLOv2的訓(xùn)練
YOLOv2的訓(xùn)練主要包括三個(gè)階段。第一階段就是先在coco分類數(shù)據(jù)集上預(yù)訓(xùn)練Darknet-19,此時(shí)模型輸入為224*224,共訓(xùn)練160個(gè)epochs。然后第二階段將網(wǎng)絡(luò)的輸入調(diào)整為448*448,繼續(xù)在ImageNet數(shù)據(jù)集上finetune分類模型,訓(xùn)練10個(gè)epochs,此時(shí)分類模型的top-1準(zhǔn)確度為76.5%,而top-5準(zhǔn)確度為93.3%。第三個(gè)階段就是修改Darknet-19分類模型為檢測模型,并在檢測數(shù)據(jù)集上繼續(xù)finetune網(wǎng)絡(luò)。

YOLOv2訓(xùn)練的三個(gè)階段
loss計(jì)算公式:

def yolo_loss(args,anchors,num_classes,rescore_confidence=False,print_loss=False):localization loss function.Parameters----------yolo_output : tensorFinal convolutional layer features.true_boxes : tensorGround truth boxes tensor with shape [batch, num_true_boxes, 5]containing box x_center, y_center, width, height, and class.detectors_mask : arraymask for detector positions where there is a matching ground truth.matching_true_boxes : arrayCorresponding ground truth boxes for positive detector positions.Already adjusted for conv height and width.anchors : tensorAnchor boxes for model.num_classes : intNumber of object classes.rescore_confidence : bool, default=FalseIf true then set confidence target to IOU of best predicted box withthe closest matching ground truth box.print_loss : bool, default=FalseIf True then use a tf.Print() to print the loss components.Returns-------mean_loss : floatmean localization loss across minibatch"""true_boxes, detectors_mask, matching_true_boxes) = argsnum_anchors = len(anchors)object_scale = 5no_object_scale = 1class_scale = 1coordinates_scale = 1pred_wh, pred_confidence, pred_class_prob = yolo_head(anchors, num_classes)# Unadjusted box predictions for loss.# TODO: Remove extra computation shared with yolo_head.yolo_output_shape = K.shape(yolo_output)feats = K.reshape(yolo_output, [yolo_output_shape[1], yolo_output_shape[2], num_anchors,num_classes + 5])pred_boxes = K.concatenate(0:2]), feats[..., 2:4]), axis=-1)# TODO: Adjust predictions by image width/height for non-square images?# IOUs may be off due to different aspect ratio.# Expand pred x,y,w,h to allow comparison with ground truth.# batch, conv_height, conv_width, num_anchors, num_true_boxes, box_paramspred_xy = K.expand_dims(pred_xy, 4)pred_wh = K.expand_dims(pred_wh, 4)pred_wh_half = pred_wh / 2.pred_mins = pred_xy - pred_wh_halfpred_maxes = pred_xy + pred_wh_halftrue_boxes_shape = K.shape(true_boxes)# batch, conv_height, conv_width, num_anchors, num_true_boxes, box_paramstrue_boxes = K.reshape(true_boxes, [1, 1, 1, true_boxes_shape[1], true_boxes_shape[2]])true_xy = true_boxes[..., 0:2]true_wh = true_boxes[..., 2:4]# Find IOU of each predicted box with each ground truth box.true_wh_half = true_wh / 2.true_mins = true_xy - true_wh_halftrue_maxes = true_xy + true_wh_halfintersect_mins = K.maximum(pred_mins, true_mins)intersect_maxes = K.minimum(pred_maxes, true_maxes)intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]pred_areas = pred_wh[..., 0] * pred_wh[..., 1]true_areas = true_wh[..., 0] * true_wh[..., 1]union_areas = pred_areas + true_areas - intersect_areasiou_scores = intersect_areas / union_areas# Best IOUs for each location.best_ious = K.max(iou_scores, axis=4) # Best IOU scores.best_ious = K.expand_dims(best_ious)# A detector has found an object if IOU > thresh for some true box.object_detections = K.cast(best_ious > 0.6, K.dtype(best_ious))# TODO: Darknet region training includes extra coordinate loss for early# training steps to encourage predictions to match anchor priors.# Determine confidence weights from object and no_object weights.# NOTE: YOLO does not use binary cross-entropy here.no_object_weights = (no_object_scale * (1 - object_detections) *- detectors_mask))no_objects_loss = no_object_weights * K.square(-pred_confidence)if rescore_confidence:objects_loss = (object_scale * detectors_mask *- pred_confidence))else:objects_loss = (object_scale * detectors_mask *- pred_confidence))confidence_loss = objects_loss + no_objects_loss# Classification loss for matching detections.# NOTE: YOLO does not use categorical cross-entropy loss here.matching_classes = K.cast(matching_true_boxes[..., 4], 'int32')matching_classes = K.one_hot(matching_classes, num_classes)classification_loss = (class_scale * detectors_mask *- pred_class_prob))# Coordinate loss for matching detection boxes.matching_boxes = matching_true_boxes[..., 0:4]coordinates_loss = (coordinates_scale * detectors_mask *- pred_boxes))confidence_loss_sum = K.sum(confidence_loss)classification_loss_sum = K.sum(classification_loss)coordinates_loss_sum = K.sum(coordinates_loss)total_loss = 0.5 * (confidence_loss_sum + classification_loss_sum + coordinates_loss_sum)if print_loss:total_loss = tf.Print([confidence_loss_sum, classification_loss_sum,coordinates_loss_sum],message='yolo_loss, conf_loss, class_loss, box_coord_loss:')return total_loss
2.2、車距的計(jì)算

通過YOLO進(jìn)行檢測車量,然后返回的車輛檢測框的坐標(biāo)與當(dāng)前坐標(biāo)進(jìn)行透視變換獲取大約的距離作為車輛之間的距離。
所使用的函數(shù)API接口為:
cv2.perspectiveTransform(src, m[, dst]) → dst
參數(shù)解釋
?src:輸入的2通道或者3通道的圖片
?m:變換矩陣
返回距離
代碼:

2.3、車道線的分割
車道線檢測的流程:

實(shí)現(xiàn)步驟:
圖片校正(對于相機(jī)畸變較大的需要先計(jì)算相機(jī)的畸變矩陣和失真系數(shù),對圖片進(jìn)行校正);
截取感興趣區(qū)域,僅對包含車道線信息的圖像區(qū)域進(jìn)行處理;
使用透視變換,將感興趣區(qū)域圖片轉(zhuǎn)換成鳥瞰圖;
針對不同顏色的車道線,不同光照條件下的車道線,不同清晰度的車道線,根據(jù)不同的顏色空間使用不同的梯度閾值,顏色閾值進(jìn)行不同的處理。并將每一種處理方式進(jìn)行融合,得到車道線的二進(jìn)制圖;
提取二進(jìn)制圖中屬于車道線的像素;
對二進(jìn)制圖片的像素進(jìn)行直方圖統(tǒng)計(jì),統(tǒng)計(jì)左右兩側(cè)的峰值點(diǎn)作為左右車道線的起始點(diǎn)坐標(biāo)進(jìn)行曲線擬合;
使用二次多項(xiàng)式分別擬合左右車道線的像素點(diǎn)(對于噪聲較大的像素點(diǎn),可以進(jìn)行濾波處理,或者使用隨機(jī)采樣一致性算法進(jìn)行曲線擬合);
計(jì)算車道曲率及車輛相對車道中央的偏離位置;
效果顯示(可行域顯示,曲率和位置顯示)。
# class that finds the whole laneclass LaneFinder:def __init__(self, img_size, warped_size, cam_matrix, dist_coeffs, transform_matrix, pixels_per_meter,warning_icon):self.found = Falseself.cam_matrix = cam_matrixself.dist_coeffs = dist_coeffsself.img_size = img_sizeself.warped_size = warped_sizeself.mask = np.zeros((warped_size[1], warped_size[0], 3), dtype=np.uint8)self.roi_mask = np.ones((warped_size[1], warped_size[0], 3), dtype=np.uint8)self.total_mask = np.zeros_like(self.roi_mask)self.warped_mask = np.zeros((self.warped_size[1], self.warped_size[0]), dtype=np.uint8)self.M = transform_matrixself.count = 0self.left_line = LaneLineFinder(warped_size, pixels_per_meter, -1.8288) # 6 feet in metersself.right_line = LaneLineFinder(warped_size, pixels_per_meter, 1.8288)if (warning_icon is not None):self.warning_icon = np.array(mpimg.imread(warning_icon) * 255, dtype=np.uint8)else:self.warning_icon = Nonedef undistort(self, img):return cv2.undistort(img, self.cam_matrix, self.dist_coeffs)def warp(self, img):return cv2.warpPerspective(img, self.M, self.warped_size, flags=cv2.WARP_FILL_OUTLIERS + cv2.INTER_CUBIC)def unwarp(self, img):return cv2.warpPerspective(img, self.M, self.img_size, flags=cv2.WARP_FILL_OUTLIERS +cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP)def equalize_lines(self, alpha=0.9):mean = 0.5 * (self.left_line.coeff_history[:, 0] + self.right_line.coeff_history[:, 0])self.left_line.coeff_history[:, 0] = alpha * self.left_line.coeff_history[:, 0] + \(1 - alpha) * (mean - np.array([0, 0, 1.8288], dtype=np.uint8))self.right_line.coeff_history[:, 0] = alpha * self.right_line.coeff_history[:, 0] + \(1 - alpha) * (mean + np.array([0, 0, 1.8288], dtype=np.uint8))def find_lane(self, img, distorted=True, reset=False):# undistort, warp, change space, filterif distorted:img = self.undistort(img)if reset:self.left_line.reset_lane_line()self.right_line.reset_lane_line()img = self.warp(img)img_hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)img_hls = cv2.medianBlur(img_hls, 5)img_lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)img_lab = cv2.medianBlur(img_lab, 5)big_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (31, 31))small_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))greenery = (img_lab[:, :, 2].astype(np.uint8) > 130) & cv2.inRange(img_hls, (0, 0, 50), (138, 43, 226))road_mask = np.logical_not(greenery).astype(np.uint8) & (img_hls[:, :, 1] < 250)road_mask = cv2.morphologyEx(road_mask, cv2.MORPH_OPEN, small_kernel)road_mask = cv2.dilate(road_mask, big_kernel)img2, contours, hierarchy = cv2.findContours(road_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)biggest_area = 0for contour in contours:area = cv2.contourArea(contour)if area > biggest_area:biggest_area = areabiggest_contour = contourroad_mask = np.zeros_like(road_mask)cv2.fillPoly(road_mask, [biggest_contour], 1)self.roi_mask[:, :, 0] = (self.left_line.line_mask | self.right_line.line_mask) & road_maskself.roi_mask[:, :, 1] = self.roi_mask[:, :, 0]self.roi_mask[:, :, 2] = self.roi_mask[:, :, 0]kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 3))black = cv2.morphologyEx(img_lab[:, :, 0], cv2.MORPH_TOPHAT, kernel)lanes = cv2.morphologyEx(img_hls[:, :, 1], cv2.MORPH_TOPHAT, kernel)kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 13))lanes_yellow = cv2.morphologyEx(img_lab[:, :, 2], cv2.MORPH_TOPHAT, kernel)self.mask[:, :, 0] = cv2.adaptiveThreshold(black, 1, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 13, -6)self.mask[:, :, 1] = cv2.adaptiveThreshold(lanes, 1, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 13, -4)self.mask[:, :, 2] = cv2.adaptiveThreshold(lanes_yellow, 1, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,13, -1.5)self.mask *= self.roi_masksmall_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))self.total_mask = np.any(self.mask, axis=2).astype(np.uint8)self.total_mask = cv2.morphologyEx(self.total_mask.astype(np.uint8), cv2.MORPH_ERODE, small_kernel)left_mask = np.copy(self.total_mask)right_mask = np.copy(self.total_mask)if self.right_line.found:left_mask = left_mask & np.logical_not(self.right_line.line_mask) & self.right_line.other_line_maskif self.left_line.found:right_mask = right_mask & np.logical_not(self.left_line.line_mask) & self.left_line.other_line_maskself.left_line.find_lane_line(left_mask, reset)self.right_line.find_lane_line(right_mask, reset)self.found = self.left_line.found and self.right_line.foundif self.found:self.equalize_lines(0.875)def draw_lane_weighted(self, img, thickness=5, alpha=0.8, beta=1, gamma=0):left_line = self.left_line.get_line_points()right_line = self.right_line.get_line_points()both_lines = np.concatenate((left_line, np.flipud(right_line)), axis=0)lanes = np.zeros((self.warped_size[1], self.warped_size[0], 3), dtype=np.uint8)if self.found:cv2.fillPoly(lanes, [both_lines.astype(np.int32)], (138, 43, 226))cv2.polylines(lanes, [left_line.astype(np.int32)], False, (255, 0, 255), thickness=thickness)cv2.polylines(lanes, [right_line.astype(np.int32)], False, (34, 139, 34), thickness=thickness)cv2.fillPoly(lanes, [both_lines.astype(np.int32)], (138, 43, 226))mid_coef = 0.5 * (self.left_line.poly_coeffs + self.right_line.poly_coeffs)curve = get_curvature(mid_coef, img_size=self.warped_size, pixels_per_meter=self.left_line.pixels_per_meter)shift = get_center_shift(mid_coef, img_size=self.warped_size,pixels_per_meter=self.left_line.pixels_per_meter)cv2.putText(img, "Road Curvature: {:6.2f}m".format(curve), (20, 50), cv2.FONT_HERSHEY_PLAIN, fontScale=2.5,thickness=5, color=(255, 0, 0))cv2.putText(img, "Road Curvature: {:6.2f}m".format(curve), (20, 50), cv2.FONT_HERSHEY_PLAIN, fontScale=2.5,thickness=3, color=(0, 0, 0))cv2.putText(img, "Car Position: {:4.2f}m".format(shift), (60, 100), cv2.FONT_HERSHEY_PLAIN, fontScale=2.5,thickness=5, color=(255, 0, 0))cv2.putText(img, "Car Position: {:4.2f}m".format(shift), (60, 100), cv2.FONT_HERSHEY_PLAIN, fontScale=2.5,thickness=3, color=(0, 0, 0))else:warning_shape = self.warning_icon.shapecorner = (10, (img.shape[1] - warning_shape[1]) // 2)patch = img[corner[0]:corner[0] + warning_shape[0], corner[1]:corner[1] + warning_shape[1]]patch[self.warning_icon[:, :, 3] > 0] = self.warning_icon[self.warning_icon[:, :, 3] > 0, 0:3]img[corner[0]:corner[0] + warning_shape[0], corner[1]:corner[1] + warning_shape[1]] = patchcv2.putText(img, "Lane lost!", (50, 170), cv2.FONT_HERSHEY_PLAIN, fontScale=2.5,thickness=5, color=(255, 0, 0))cv2.putText(img, "Lane lost!", (50, 170), cv2.FONT_HERSHEY_PLAIN, fontScale=2.5,thickness=3, color=(0, 0, 0))lanes_unwarped = self.unwarp(lanes)return cv2.addWeighted(img, alpha, lanes_unwarped, beta, gamma)def process_image(self, img, reset=False, show_period=10, blocking=False):self.find_lane(img, distorted=True, reset=reset)lane_img = self.draw_lane_weighted(img)self.count += 1if show_period > 0 and (self.count % show_period == 1 or show_period == 1):start = 231plt.clf()for i in range(3):plt.subplot(start + i)plt.imshow(lf.mask[:, :, i] * 255, cmap='gray')plt.subplot(234)plt.imshow((lf.left_line.line + lf.right_line.line) * 255)ll = cv2.merge((lf.left_line.line, lf.left_line.line * 0, lf.right_line.line))lm = cv2.merge((lf.left_line.line_mask, lf.left_line.line * 0, lf.right_line.line_mask))plt.subplot(235)plt.imshow(lf.roi_mask * 255, cmap='gray')plt.subplot(236)plt.imshow(lane_img)if blocking:plt.show()else:plt.draw()plt.pause(0.000001)return lane_img
2.4、測試過程和結(jié)果



Gif文件由于壓縮問題看上不不是很好,后續(xù)會對每一部分的內(nèi)容進(jìn)行更加細(xì)致的實(shí)踐和講解。
參考:
https://zhuanlan.zhihu.com/p/35325884
https://www.cnblogs.com/YiXiaoZhou/p/7429481.html
https://github.com/yhcc/yolo2
https://github.com/allanzelener/yad2k
https://zhuanlan.zhihu.com/p/74597564
https://zhuanlan.zhihu.com/p/46295711
https://blog.csdn.net/weixin_38746685/article/details/81613065?depth_1-
https://github.com/yang1688899/CarND-Advanced-Lane-Lines
end
交流群
歡迎加入公眾號讀者群一起和同行交流,目前有SLAM、三維視覺、傳感器、自動駕駛、計(jì)算攝影、檢測、分割、識別、醫(yī)學(xué)影像、GAN、算法競賽等微信群(以后會逐漸細(xì)分),請掃描下面微信號加群,備注:”昵稱+學(xué)校/公司+研究方向“,例如:”張三 + 上海交大 + 視覺SLAM“。請按照格式備注,否則不予通過。添加成功后會根據(jù)研究方向邀請進(jìn)入相關(guān)微信群。請勿在群內(nèi)發(fā)送廣告,否則會請出群,謝謝理解~

