<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          AAAI 2021 | 時間序列相關(guān)論文匯總

          共 6572字,需瀏覽 14分鐘

           ·

          2021-02-25 22:30


          會議介紹



          AAAI的英文全稱是 The Association for the Advance of Artificial Intelligence,中文意思是美國人工智能協(xié)會。

          美國人工智能協(xié)會(American Association for Artificial Intelligence)是人工智能領域的主要學術(shù)組織之一。該協(xié)會主辦的年會(AAAI, The National Conference on Artificial Intelligence)是一個主要的人工智能學術(shù)會議,被中國計算機協(xié)會推薦為A類會議。

          今年 AAAI 2021 將于北京時間2021年2月9到12號于線上舉行。本次大會共接收了 1692 篇論文,接收率約為21%,可謂收獲頗豐。編者梳理與時間序列有關(guān)的研究,竟也高達66篇,可見產(chǎn)學兩界對該領域的熱情與應用前景。完整的接收論文列表可以訪問原文獲取。

          本文梳理AAAI 2021有關(guān)時間序列領域的最新研究成果,供大家參考。
          • 時間序列
            • 預測:4篇
            • 分類:4篇
            • 異常檢測:3篇
            • 聚類:1篇
            • 補缺:1篇
          • 時間關(guān)系抽?。?篇
          • 時空網(wǎng)絡
            • 分割:3篇
            • 預測:13篇
            • 檢測:11篇
          • 時間知識圖譜:3篇
          • 時間神經(jīng)網(wǎng)絡:5篇
          • 順序分析
            • 推薦:5篇
            • 決策:7篇
            • 搜索:3篇


          時間序列


          01

          預測

          時序預測是時間序列領域的經(jīng)典問題之一。本次AAAI帶來了包括:多維時序預測/分解/多步預測的研究
          • Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting

          • Dynamic Gaussian Mixture Based Deep Generative Model for Robust Forecasting on Sparse Multivariate Time Series

          • Temporal Latent Autoencoder: A Method for Probabilistic Multivariate Time Series Forecasting

          • Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting


          02

          分類

          時序分類是時間序列領域的經(jīng)典問題之一。本次AAAI帶來了包括:多維時序分類/標簽增強 等研究

          • Correlative Channel-Aware Fusion for Multi-View Time Series Classification

          • Learnable Dynamic Temporal Pooling for Time Series Classification

          • ShapeNet: A Shapelet-Neural Network Approach for Multivariate Time Series Classification

          • Joint-Label Learning by Dual Augmentation for Time Series Classification


          03

          異常檢測

          時序異常檢測在產(chǎn)業(yè)界應用很廣。本次AAAI帶來了包括:圖網(wǎng)絡/異常影響等研究
          • Graph Neural Network-Based Anomaly Detection in Multivariate Time Series

          • Time Series Anomaly Detection with Multiresolution Ensemble Decoding

          • Outlier Impact Characterization for Time Series Data


          04

          聚類

          本次AAAI帶來了一篇關(guān)于不完整時序的聚類研究
          • Learning Representations for Incomplete Time Series Clustering


          05

          補缺

          本次AAAI帶了一篇關(guān)于多維時間序列補缺的研究
          • Generative Semi-Supervised Learning for Multivariate Time Series Imputation




          時間關(guān)系抽取


          關(guān)系抽取旨在分析不同時序之間相關(guān)性,涉及因果推導。本次AAAI帶來了3篇研究
          • Clinical Temporal Relation Extraction with Probabilistic Soft Logic Regularization and Global Inference

          • Time Series Domain Adaptation via Sparse Associative Structure Alignment

          • Transformer-Style Relational Reasoning with Dynamic Memory Updating for Temporal Network Modeling




          時空網(wǎng)絡

          01

          分割

          時空分割在視頻分段場景應用廣泛。本次AAAI帶來了3篇研究
          • Spatiotemporal Graph Neural Network Based Mask Reconstruction for Video Object Segmentation

          • Temporal Relational Modeling with Self-Supervision for Action Segmentation

          • Temporal Segmentation of Fine-Gained Semantic Action: A Motion-Centered Figure Skating Dataset


          02

          預測

          時空預測在交通預測,用戶行為預測,多因子氣象預測等領域應用廣泛。本次AAAI帶來了13篇研究
          • Graph and Temporal Convolutional Network for Spatio-Temporal 3D Multi-Person Pose Estimation in Monocular Videos

          • Robust Spatio-Temporal Purchase Prediction via Deep Meta Learning

          • BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation

          • Automatic Generation of Flexible Plans via Diverse Temporal Planning

          • Pre-Training Context and Time Aware Location Embeddings from Spatial-Temporal Trajectories for User Next Location Prediction

          • GSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk Forecasting

          • Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting

          • Temporal Pyramid Network for Pedestrian Trajectory Prediction with Multi-Supervision

          • Joint Air Quality and Weather Prediction Based on Multi-Adversarial Spatiotemporal Networks

          • CloudLSTM: A Recurrent Neural Model for Spatiotemporal Point-Cloud Stream Forecasting

          • Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Learning

          • Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network

          • FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting


          03

          檢測

          時空檢測在動作識別,目標檢測,事件檢測等場景應用廣泛。本次AAAI帶來了11篇研究
          • Spatio-Temporal Difference Descriptor for Skeleton-Based Action Recognition

          • Spatial-Temporal Causal Inference for Partial Image-to-Video Adaptation

          • Temporal ROI Align for Video Object Recognition

          • Multi-Scale Spatial Temporal Graph Convolutional Network for Skeleton-Based Action Recognition

          • Learning Precise Temporal Point Event Detection with Misaligned Labels

          • Real-Time Tropical Cyclone Intensity Estimation by Handling Temporally Heterogeneous Satellite Data

          • STELAR: Spatio-Temporal Tensor Factorization with Latent Epidemiological Regularization

          • ACSNet: Action-Context Separation Network for Weakly Supervised Temporal Action Localization

          • Weakly-Supervised Temporal Action Localization by Uncertainty Modeling

          • Weakly Supervised Temporal Action Localization through Learning Explicit Subspaces for Action and Context

          • A Hybrid Attention Mechanism for Weakly-Supervised Temporal Action Localization




          時空知識圖譜


          時空知識圖譜在原有知識圖譜上,考慮時間先后的知識變遷。本次AAAI帶來3篇研究
          • ChronoR: Rotation Based Temporal Knowledge Graph Embedding

          • Learning from History: Modeling Temporal Knowledge Graphs with Sequential CopyGeneration Networks

          • Neural Latent Space Model for Dynamic Networks and Temporal Knowledge Graphs




          時間神經(jīng)網(wǎng)絡


          處理時間先后順序(或序列順序)的神經(jīng)網(wǎng)絡為時序應用研究提供基礎。本次AAAI帶來了5篇研究
          • Bridging Towers of Multi-Task Learning with a Gating Mechanism for Aspect-Based Sentiment Analysis and Sequential Metaphor Identification

          • C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer

          • Inductive Graph Neural Networks for Spatiotemporal Kriging

          • Temporal-Coded Deep Spiking Neural Network with Easy Training and Robust Performance

          • Continuous-Time Attention for Sequential Learning




          順序分析

          01

          推薦

          分析用戶購買行為的先后順序是推薦系統(tǒng)的一大方向。本次AAAI帶來了5篇研究
          • Cold-Start Sequential Recommendation via Meta Learner

          • A User-Adaptive Layer Selection Framework for Very Deep Sequential Recommender Models

          • Noninvasive Self-Attention for Side Information Fusion in Sequential Recommendation

          • Dynamic Memory Based Attention Network for Sequential Recommendation

          • Reinforcement Learning of Sequential Price Mechanisms


          02

          決策

          與推薦類似,用戶決策具有一定的先后順序。本次AAAI帶來了7篇研究
          • Model-Free Online Learning in Unknown Sequential Decision Making Problems and Games

          • Bandit Linear Optimization for Sequential Decision Making and Extensive-Form Games

          • Sequential Attacks on Kalman Filter-Based Forward Collision Warning Systems

          • Apparently Irrational Choice as Optimal Sequential Decision Making

          • Ethically Compliant Sequential Decision Making

          • Hindsight and Sequential Rationality of Correlated Play

          • Stock Selection via Spatiotemporal Hypergraph Attention Network: A Learning to Rank Approach


          03

          搜索

          如何預估用戶的行為從而提高搜索的效率?本次AAAI帶來了3篇研究
          • When Hashing Met Matching: Efficient Spatio-Temporal Search for Ridesharing

          • Synthesis of Search Heuristics for Temporal Planning via Reinforcement Learning

          • Sequential End-to-End Network for Efficient Person Search


          “整理不易,三連
          瀏覽 93
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  操丝袜熟女骚逼 | 男操女逼射逼心国产中字传媒视频 | 污污污免费视频网站 | 北条麻妃在线一区二区 | 国产精品一级无码免费 |