使用PixelLib來(lái)實(shí)現(xiàn)圖像分割
點(diǎn)擊上方“小白學(xué)視覺(jué)”,選擇加"星標(biāo)"或“置頂”
重磅干貨,第一時(shí)間送達(dá)

幫助無(wú)人駕駛汽車(chē)視覺(jué)系統(tǒng)有效的了解道路場(chǎng)景。 醫(yī)學(xué)圖像分割:為執(zhí)行診斷測(cè)試提供身體部位的分割。 衛(wèi)星圖像分析。



pip3 install tensorflow
pip3 install opencv-python
pip3 install scikit-image
pip3 install pillow
pip3 install pixellib
import pixellibfrom pixellib.semantic import semantic_segmentationsegment_image = semantic_segmentation()segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_ordering_tf_kernels.h5")segment_image.segmentAsPascalvoc("path_to_image", output_image_name = "path_to_output_image")
import pixellibfrom pixellib.semantic import semantic_segmentationsegment_image = semantic_segmentation()
segment_image.load_pascalvoc_model(“deeplabv3_xception_tf_dim_ordering_tf_kernels.h5”)https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5
segment_image.segmentAsPascalvoc(“path_to_image”, output_image_name = “path_to_output_image)
path_to_image:這個(gè)是要分割的圖像路徑。 output_image_name:這個(gè)是保存分割圖像的路徑。它將保存在當(dāng)前工作目錄中。

import pixellibfrom pixellib.semantic import semantic_segmentationsegment_image = semantic_segmentation()segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_ordering_tf_kernels.h5")segment_image.segmentAsPascalvoc("sample1.jpg", output_image_name = "image_new.jpg")

segment_image.segmentAsPascalvoc("sample1.jpg", output_image_name = "image_new.jpg", overlay = True)

import pixellibfrom pixellib.semantic import semantic_segmentationimport timesegment_image = semantic_segmentation()segment_image.load_pascalvoc_model("pascal.h5")start = time.time()segment_image.segmentAsPascalvoc("sample1.jpg", output_image_name= "image_new.jpg")end = time.time()print(f"Inference Time: {end-start:.2f}seconds")
Inference Time: 7.38seconds

output, segmap = segment_image.segmentAsPascalvoc()
import pixellibfrom pixellib.semantic import semantic_segmentationimport cv2segment_image = semantic_segmentation()segment_image.load_pascalvoc_model("pascal.h5")output, segmap = segment_image.segmentAsPascalvoc("sample1.jpg")cv2.imwrite("img.jpg", output)print(output.shape)
segmap, segoverlay = segment_image.segmentAsPascalvoc(overlay = True)
import pixellibfrom pixellib.semantic import semantic_segmentationimport cv2segment_image = semantic_segmentation()segment_image.load_pascalvoc_model("pascal.h5")segmap, segoverlay = segment_image.segmentAsPascalvoc("sample1.jpg", overlay= True)cv2.imwrite("img.jpg", segoverlay)print(segoverlay.shape)import pixellibfrom pixellib.instance import instance_segmentationsegment_image = instance_segmentation()segment_image.load_model("mask_rcnn_coco.h5")segment_image.segmentImage("path_to_image", output_image_name = "output_image_path")
import pixellibfrom pixellib.instance import instance_segmentationsegment_image = instance_segmentation()
segment_image.load_model("mask_rcnn_coco.h5")
https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.2/mask_rcnn_coco.h5
segment_image.segmentImage("path_to_image", output_image_name = "output_image_path")
path_to_image:模型要預(yù)測(cè)的圖像路徑。 output_image_path:保存分割結(jié)果的路徑。它將保存在當(dāng)前工作目錄中。

import pixellibfrom pixellib.instance import instance_segmentationsegment_image = instance_segmentation()segment_image.load_model("mask_rcnn_coco.h5")segment_image.segmentImage("sample2.jpg", output_image_name = "image_new.jpg")

segment_image.segmentImage("path_to_image", output_image_name = "output_image_path", show_bboxes = True)

import pixellibfrom pixellib.instance import instance_segmentationimport timesegment_image = instance_segmentation()segment_image.load_model("mask_rcnn_coco.h5")start = time.time()segment_image.segmentImage("former.jpg", output_image_name= "image_new.jpg")end = time.time()print(f"Inference Time: {end-start:.2f}seconds")
Inference Time: 12.87seconds
檢測(cè)到的對(duì)象數(shù)組 對(duì)象對(duì)應(yīng)類(lèi)的id數(shù)組 分割掩碼數(shù)組 輸出的數(shù)組
segmask, output = segment_image.segmentImage()
import pixellibfrom pixellib.instance import instance_segmentationimport cv2instance_seg = instance_segmentation()instance_seg.load_model("mask_rcnn_coco.h5")segmask, output = instance_seg.segmentImage("sample2.jpg")cv2.imwrite("img.jpg", output)print(output.shape)
segmask, output = segment_image.segmentImage(show_bboxes = True)
import pixellibfrom pixellib.instance import instance_segmentationimport cv2instance_seg = instance_segmentation()instance_seg.load_model("mask_rcnn_coco.h5")segmask, output = instance_seg.segmentImage("sample2.jpg", show_bboxes= True)cv2.imwrite("img.jpg", output)print(output.shape)
https://github.com/ayoolaolafenwa/PixelLib
https://pixellib.readthedocs.io/en/latest/
交流群
歡迎加入公眾號(hào)讀者群一起和同行交流,目前有SLAM、三維視覺(jué)、傳感器、自動(dòng)駕駛、計(jì)算攝影、檢測(cè)、分割、識(shí)別、醫(yī)學(xué)影像、GAN、算法競(jìng)賽等微信群(以后會(huì)逐漸細(xì)分),請(qǐng)掃描下面微信號(hào)加群,備注:”昵稱(chēng)+學(xué)校/公司+研究方向“,例如:”張三?+?上海交大?+?視覺(jué)SLAM“。請(qǐng)按照格式備注,否則不予通過(guò)。添加成功后會(huì)根據(jù)研究方向邀請(qǐng)進(jìn)入相關(guān)微信群。請(qǐng)勿在群內(nèi)發(fā)送廣告,否則會(huì)請(qǐng)出群,謝謝理解~
評(píng)論
圖片
表情
