<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          圖上的對(duì)抗與攻擊精選論文列表(?2021相關(guān)論文一覽)

          共 4937字,需瀏覽 10分鐘

           ·

          2021-07-03 12:50

          來(lái)源深度學(xué)習(xí)與圖網(wǎng)絡(luò)

          本文約1400字,建議閱讀5分鐘

          本文為你分享圖上的對(duì)抗與攻擊精選論文。

          2021相關(guān)論文一覽

          1. 大規(guī)模攻擊圖神經(jīng)網(wǎng)絡(luò)
          2. 圖神經(jīng)網(wǎng)絡(luò)的黑盒梯度攻擊:
            更深入洞察圖的攻擊和防御
          3. 增強(qiáng)多路復(fù)用網(wǎng)絡(luò)對(duì)節(jié)點(diǎn)社區(qū)級(jí)聯(lián)故障的魯棒性和彈性
          4. PATHATTACK:
            攻擊復(fù)雜網(wǎng)絡(luò)中的最短路徑
          5. Deformable shape的通用譜對(duì)抗攻擊
          6. Preserve, Promote, or Attack?通過(guò)拓?fù)鋽_動(dòng)的 GNN 解釋
          7. 網(wǎng)絡(luò)嵌入攻擊:
            一種基于歐幾里德距離的方法
          8. 通過(guò)監(jiān)督網(wǎng)絡(luò)Poisoning對(duì)網(wǎng)絡(luò)嵌入的對(duì)抗性攻擊
          9. DeHiB:
            通過(guò)對(duì)抗性擾動(dòng)對(duì)半監(jiān)督學(xué)習(xí)的深層隱藏后門(mén)攻擊
          10. GraphAttacker:
            一個(gè)通用的多任務(wù)圖攻擊框架
          11. 圖神經(jīng)網(wǎng)絡(luò)的成員推理攻擊

          1. Attacking Graph Neural Networks at Scale

          2. Black-box Gradient Attack on Graph Neural Networks: Deeper Insights in Graph-based Attack and Defense

          3. Enhancing Robustness and Resilience of Multiplex Networks Against Node-Community Cascading Failures

          4. PATHATTACK: Attacking Shortest Paths in Complex Networks

          5. Universal Spectral Adversarial Attacks for Deformable Shapes

          6. Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation

          7. Network Embedding Attack: An Euclidean Distance Based Method

          8. Adversarial Attack on Network Embeddings via Supervised Network Poisoning

          9. DeHiB: Deep Hidden Backdoor Attack on Semi-Supervised Learning via Adversarial Perturbation

          10. GraphAttacker: A General Multi-Task Graph Attack Framework

          11. Membership Inference Attack on Graph Neural Networks


          2020年相關(guān)研究論文

          1. 圖神經(jīng)網(wǎng)絡(luò)的對(duì)抗性標(biāo)簽翻轉(zhuǎn)攻擊和防御
          2. 對(duì)圖神經(jīng)網(wǎng)絡(luò)的探索性對(duì)抗攻擊
          3. 對(duì)圖卷積網(wǎng)絡(luò)的有針對(duì)性的通用攻擊
          4. 在不改變現(xiàn)有連接的情況下攻擊基于圖的分類(lèi)
          5. 學(xué)習(xí)通過(guò)有針對(duì)性的擾動(dòng)欺騙知識(shí)圖譜增強(qiáng)模型
          6. 基于圖神經(jīng)網(wǎng)絡(luò)的時(shí)空預(yù)測(cè)的一種頂點(diǎn)攻擊
          7. 欺騙圖神經(jīng)網(wǎng)絡(luò)的單節(jié)點(diǎn)攻擊
          8. 圖神經(jīng)網(wǎng)絡(luò)的黑盒對(duì)抗攻擊作為影響最大化問(wèn)題
          9. 深度圖匹配的對(duì)抗性攻擊
          10. 對(duì)圖神經(jīng)網(wǎng)絡(luò)進(jìn)行Practical對(duì)抗性攻擊
          11. 一種對(duì)隱私保護(hù)記錄鏈接的圖匹配攻擊
          12. 通過(guò) GAN 對(duì)圖嵌入的自適應(yīng)對(duì)抗性攻擊
          13. 乘法器交替方向法對(duì)圖神經(jīng)網(wǎng)絡(luò)的可擴(kuò)展對(duì)抗性攻擊
          14. 針對(duì)用于惡意軟件檢測(cè)的圖神經(jīng)網(wǎng)絡(luò)的語(yǔ)義保留強(qiáng)化學(xué)習(xí)攻擊
          15. 對(duì)大規(guī)模圖的對(duì)抗性攻擊
          16. 通過(guò)影響函數(shù)(Influence Function)對(duì)圖神經(jīng)網(wǎng)絡(luò)進(jìn)行有效的規(guī)避攻擊
          17. 基于強(qiáng)化學(xué)習(xí)的黑盒規(guī)避攻擊在動(dòng)態(tài)圖中進(jìn)行鏈接預(yù)測(cè)
          18. 針對(duì)無(wú)標(biāo)度網(wǎng)絡(luò)的 BC 分類(lèi)的對(duì)抗性攻擊
          19. 基于圖神經(jīng)網(wǎng)絡(luò)的鏈路預(yù)測(cè)算法的對(duì)抗性攻擊
          20. 圖神經(jīng)網(wǎng)絡(luò)的Practical對(duì)抗性攻擊
          21. 通過(guò)迭代梯度攻擊的鏈路預(yù)測(cè)對(duì)抗性攻擊
          22. 對(duì)圖結(jié)構(gòu)化數(shù)據(jù)的有效對(duì)抗性攻擊
          23. 圖Backdoor
          24. 圖神經(jīng)網(wǎng)絡(luò)的Backdoor攻擊
          25. 通過(guò) Nash 強(qiáng)化學(xué)習(xí)進(jìn)行垃圾郵件發(fā)送檢測(cè)
          26. 圖神經(jīng)網(wǎng)絡(luò)的對(duì)抗性攻擊:擾動(dòng)及其模式
          27. 對(duì)分層圖池化神經(jīng)網(wǎng)絡(luò)的對(duì)抗性攻擊
          28. 從圖神經(jīng)網(wǎng)絡(luò)竊取鏈接
          29. 通過(guò)注入惡意節(jié)點(diǎn)對(duì)圖數(shù)據(jù)進(jìn)行可擴(kuò)展攻擊
          30. 網(wǎng)絡(luò)中斷:最大化社交網(wǎng)絡(luò)中的分歧和兩極分化
          31. 網(wǎng)絡(luò)中意見(jiàn)動(dòng)態(tài)的對(duì)抗性擾動(dòng)
          32. 圖神經(jīng)網(wǎng)絡(luò)上的非目標(biāo)特定節(jié)點(diǎn)注入攻擊:一種分層強(qiáng)化學(xué)習(xí)方法
          33. MGA:網(wǎng)絡(luò)上的動(dòng)量梯度攻擊
          34. 通過(guò)對(duì)圖卷積網(wǎng)絡(luò)進(jìn)行Poisoning鄰居的間接對(duì)抗性攻擊
          35. 圖通用對(duì)抗性攻擊:一些不良行為者破壞圖學(xué)習(xí)模型
          36. 對(duì)無(wú)標(biāo)度網(wǎng)絡(luò)的對(duì)抗性攻擊:測(cè)試物理標(biāo)準(zhǔn)的穩(wěn)健性
          37. 通過(guò)隱藏個(gè)人對(duì)社區(qū)檢測(cè)的對(duì)抗性攻擊

          1. Adversarial Label-Flipping Attack and Defense for Graph Neural Networks  

          2. Exploratory Adversarial Attacks on Graph Neural Networks  

          3. A Targeted Universal Attack on Graph Convolutional Network  

          4. Attacking Graph-Based Classification without Changing Existing Connections 

          5. Learning to Deceive Knowledge Graph Augmented Models via Targeted Perturbation  

          6. One Vertex Attack on Graph Neural Networks-based Spatiotemporal Forecasting

          7. Single-Node Attack for Fooling Graph Neural Networks  

          8. Black-Box Adversarial Attacks on Graph Neural Networks as An Influence Maximization Problem  

          9. Adversarial Attacks on Deep Graph Matching  | Attack  |  Graph Matching  | Deep Graph Matching Models 

          10. Towards More Practical Adversarial Attacks on Graph Neural Networks  

          11. A Graph Matching Attack on Privacy-Preserving Record Linkage 

          12. Adaptive Adversarial Attack on Graph Embedding via GAN  

          13. Scalable Adversarial Attack on Graph Neural Networks with Alternating Direction Method of Multipliers 

          14. Semantic-preserving Reinforcement Learning Attack Against Graph Neural Networks for Malware Detection 

          15. Adversarial Attack on Large Scale Graph  

          16. Efficient Evasion Attacks to Graph Neural Networks via Influence Function

          17. Reinforcement Learning-based Black-Box Evasion Attacks to Link Prediction in Dynamic Graphs 

          18. Adversarial attack on BC classification for scale-free networks

          19. Adversarial Attacks on Link Prediction Algorithms Based on Graph Neural Networks 

          20. Practical Adversarial Attacks on Graph Neural Networks

          21. Link Prediction Adversarial Attack Via Iterative Gradient Attack 

          22. An Efficient Adversarial Attack on Graph Structured Data 

          23. Graph Backdoor  | Attack  |  Node Classification Graph Classification  

          24. Backdoor Attacks to Graph Neural Networks 

          25. Robust Spammer Detection by Nash Reinforcement Learning 

          26. Adversarial Attacks on Graph Neural Networks: Perturbations and their Patterns

          27. Adversarial Attack on Hierarchical Graph Pooling Neural Networks

          28. Stealing Links from Graph Neural Networks  

          29. Scalable Attack on Graph Data by Injecting Vicious Nodes 

          30. Network disruption: maximizing disagreement and polarization in social networks

          31. Adversarial Perturbations of Opinion Dynamics in Networks 

          32. Non-target-specific Node Injection Attacks on Graph Neural Networks: A Hierarchical Reinforcement Learning Approach  

          33. MGA: Momentum Gradient Attack on Network  | Attack  |  Node Classification, Community Detection

          34. Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks 

          35. Graph Universal Adversarial Attacks: A Few Bad Actors Ruin Graph Learning Models

          36. Adversarial Attacks to Scale-Free Networks: Testing the Robustness of Physical Criteria 

          37. Adversarial Attack on Community Detection by Hiding Individuals 


          更多論文請(qǐng)查看:
          https://github.com/safe-graph/graph-adversarial-learning-literature


          編輯:文婧


          瀏覽 146
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  国产成人久久久久 | 精品福利导航 | 偷拍五月丁香 | 插逼国产视频 | 日本内射在线观看 |