<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          java容器中的幾種計數(shù)方法淺談

          共 26547字,需瀏覽 54分鐘

           ·

          2021-03-26 16:05

          走過路過不要錯過

          點擊藍(lán)字關(guān)注我們


          本文討論java集合容器中的幾種元素數(shù)量獲取的方式,命題很小,但是也足以讓我們思考一些東西。

          所謂計數(shù):即是給出所在容器的元素總數(shù)的方式。一般能想到的就是兩種方式:一是使用某個字段直接存儲該計數(shù)值,二是在請求計數(shù)值時臨時去計算所有元素數(shù)量。貌似本文的答案已經(jīng)出來了。好吧,那我們還是從源碼的角度來驗證下想法吧:

          一般在java的集合容器中,可以分為普通容器和并發(fā)容器,我們就姑且以這種方式來劃分下,驗證下其實現(xiàn)計數(shù)的方式吧!

          1:普通容器 --HashMap

          一般非并發(fā)容器在進行增刪改時,都會同時維護一個count值,如hashmap中的實現(xiàn):

              // HashMap 增加和修改都在此實現(xiàn)    /**     * Implements Map.put and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to put     * @param onlyIfAbsent if true, don't change existing value     * @param evict if false, the table is in creation mode.     * @return previous value, or null if none     */    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {        Node<K,V>[] tab; Node<K,V> p; int n, i;        if ((tab = table) == null || (n = tab.length) == 0)            n = (tab = resize()).length;        if ((p = tab[i = (n - 1) & hash]) == null)            tab[i] = newNode(hash, key, value, null);        else {            Node<K,V> e; K k;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            else if (p instanceof TreeNode)                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            else {                for (int binCount = 0; ; ++binCount) {                    if ((e = p.next) == null) {                        p.next = newNode(hash, key, value, null);                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            if (e != null) { // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        // 直接對size進行增加1即可, 如果是更新key的值,則不會運行到此處,即不會進行相加        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }    // 刪除元素的實現(xiàn),同時維護 size 大小    /**     * Implements Map.remove and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to match if matchValue, else ignored     * @param matchValue if true only remove if value is equal     * @param movable if false do not move other nodes while removing     * @return the node, or null if none     */    final Node<K,V> removeNode(int hash, Object key, Object value,                               boolean matchValue, boolean movable) {        Node<K,V>[] tab; Node<K,V> p; int n, index;        if ((tab = table) != null && (n = tab.length) > 0 &&            (p = tab[index = (n - 1) & hash]) != null) {            Node<K,V> node = null, e; K k; V v;            // 先查找node所在的位置            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                node = p;            else if ((e = p.next) != null) {                if (p instanceof TreeNode)                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);                else {                    do {                        if (e.hash == hash &&                            ((k = e.key) == key ||                             (key != null && key.equals(k)))) {                            node = e;                            break;                        }                        p = e;                    } while ((e = e.next) != null);                }            }            if (node != null && (!matchValue || (v = node.value) == value ||                                 (value != null && value.equals(v)))) {                if (node instanceof TreeNode)                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);                else if (node == p)                    tab[index] = node.next;                else                    p.next = node.next;                ++modCount;                // 直接減小size即可                --size;                afterNodeRemoval(node);                return node;            }        }        return null;    }

          因為有了增刪改時對計數(shù)器的維護,所以在想要獲取總數(shù)時,就容易許多了。只需把size字段返回即可。

              // HashMap.size()    /**     * Returns the number of key-value mappings in this map.     *     * @return the number of key-value mappings in this map     */    public int size() {        return size;    }

          所以,在這種情況下,獲取計數(shù)值的方式非常簡單。但是不管怎么樣,size字段對外部是不可見的,因為它是容器內(nèi)部的一個實現(xiàn)邏輯,它完全在將來的某個時刻改變掉。即 size() != size


          2. 普通容器 --LinkedList

          看完hash類的計數(shù)實現(xiàn),咱們再來看另外一個類型的容器LinkedList:

              // LinkedList.add(E)   添加一個元素    public boolean add(E e) {        linkLast(e);        return true;    }    /**     * Links e as last element.     */    void linkLast(E e) {        final Node<E> l = last;        final Node<E> newNode = new Node<>(l, e, null);        last = newNode;        if (l == null)            first = newNode;        else            l.next = newNode;        // 同樣,直接使用一個 size 計數(shù)器統(tǒng)計即可        size++;        modCount++;    }
          // 刪除一個元素, 同時維護 size 字段 public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } /** * Unlinks non-null first node f. */ private E unlinkFirst(Node<E> f) { // assert f == first && f != null; final E element = f.item; final Node<E> next = f.next; f.item = null; f.next = null; // help GC first = next; if (next == null) last = null; else next.prev = null; // 元素計數(shù)減1 size--; modCount++; return element; }
          // 同樣,統(tǒng)計元素數(shù)量時,直接返回size即可 public int size() { return size; }

          可見,LinkedList 也同樣是簡單地維護一個計數(shù)器字段,從而實現(xiàn)了高效地計數(shù)方法。而這簡單地實現(xiàn),則是基于單線程的訪問的,它同時維護一個計數(shù)字段,基本沒有多少開銷,卻給取值時帶來了便利。

          總結(jié): 普通容器直接維護一個計數(shù)器字段,可以很方便地進行大小統(tǒng)計操作。

          3. 并發(fā)容器 --ConcurrentHashMap

          而對于并發(fā)容器,則可能會不一樣些,但也有一些情況是一樣的。比較,HashTable, 直接使用 synchronized 來保證線程安全,則它也同樣可以直接使用一個size即可完成元素大小的統(tǒng)計。事實上,有些版本的HashTable僅僅是在HashMap的上面加上了synchronizd鎖而已(有些版本則是 不一樣的哦),細(xì)節(jié)咱們無需再看。

          而稍微有點不一樣的如: ConcurrentHashMap.size(), 早期的 ConcurrentHashMap 使用分段鎖,則需要統(tǒng)計各segement的元素,相加起來然后得到整體元素大小. 而jdk1.8中,已經(jīng)放棄使用分段鎖來實現(xiàn)高性能安全的hash容器了,而是直接使用 synchronized + CAS + 紅黑樹 實現(xiàn). 那么,我們來看看其實現(xiàn)元素統(tǒng)計這一功能的實現(xiàn)有何不同吧!

              // ConcurrentHashMap.putVal()  新增或修改一個元素    /** Implementation for put and putIfAbsent */    final V putVal(K key, V value, boolean onlyIfAbsent) {        if (key == null || value == null) throw new NullPointerException();        int hash = spread(key.hashCode());        int binCount = 0;        for (Node<K,V>[] tab = table;;) {            Node<K,V> f; int n, i, fh;            if (tab == null || (n = tab.length) == 0)                tab = initTable();            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {                if (casTabAt(tab, i, null,                             new Node<K,V>(hash, key, value, null)))                    break;                   // no lock when adding to empty bin            }            else if ((fh = f.hash) == MOVED)                tab = helpTransfer(tab, f);            else {                V oldVal = null;                synchronized (f) {                    if (tabAt(tab, i) == f) {                        if (fh >= 0) {                            binCount = 1;                            for (Node<K,V> e = f;; ++binCount) {                                K ek;                                if (e.hash == hash &&                                    ((ek = e.key) == key ||                                     (ek != null && key.equals(ek)))) {                                    oldVal = e.val;                                    if (!onlyIfAbsent)                                        e.val = value;                                    break;                                }                                Node<K,V> pred = e;                                if ((e = e.next) == null) {                                    pred.next = new Node<K,V>(hash, key,                                                              value, null);                                    break;                                }                            }                        }                        else if (f instanceof TreeBin) {                            Node<K,V> p;                            binCount = 2;                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                                           value)) != null) {                                oldVal = p.val;                                if (!onlyIfAbsent)                                    p.val = value;                            }                        }                    }                }                if (binCount != 0) {                    if (binCount >= TREEIFY_THRESHOLD)                        treeifyBin(tab, i);                    if (oldVal != null)                        return oldVal;                    break;                }            }        }        // 主要是在進行新增成功時,再進行計數(shù)器的操作, 看起來不是 ++size 這么簡單了        addCount(1L, binCount);        return null;    }
          // 這個計數(shù)的相加看起來相當(dāng)復(fù)雜 /** * Adds to count, and if table is too small and not already * resizing, initiates transfer. If already resizing, helps * perform transfer if work is available. Rechecks occupancy * after a transfer to see if another resize is already needed * because resizings are lagging additions. * * @param x the count to add * @param check if <0, don't check resize, if <= 1 only check if uncontended */ private final void addCount(long x, int check) { CounterCell[] as; long b, s; // 使用 CounterCell 來實現(xiàn)計數(shù)操作 // 使用 CAS 保證更新計數(shù)時只會有一個線程成功 if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || // 使用一個類似隨機負(fù)載均衡的方式,將計數(shù)值隨機添加到 CounterCell 的某個值下面,減少多線程競爭的可能性 (a = as[ThreadLocalRandom.getProbe() & m]) == null || // 通過cas將計數(shù)值x添加到 CounterCell 的 value 字段中 !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { // 如果上面添加失敗,則使用 fullAddCount 進行重新添加該計數(shù) fullAddCount(x, uncontended); return; } if (check <= 1) return; // 基于 CounterCell 做一此匯總操作 s = sumCount(); } // 在進行put值時, check的值都是大于等于0的 if (check >= 0) { Node<K,V>[] tab, nt; int n, sc; // rehash 處理 while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) // 輔助進行hash擴容 transfer(tab, null); s = sumCount(); } } } // fullAddCount 比較復(fù)雜, 它的目的是為了保證多線程可以快速進行添加完成, 目標(biāo)很簡單, 即向數(shù)組 CounterCell 中添加一個值 x // See LongAdder version for explanation private final void fullAddCount(long x, boolean wasUncontended) { int h; if ((h = ThreadLocalRandom.getProbe()) == 0) { ThreadLocalRandom.localInit(); // force initialization h = ThreadLocalRandom.getProbe(); wasUncontended = true; } boolean collide = false; // True if last slot nonempty for (;;) { CounterCell[] as; CounterCell a; int n; long v; if ((as = counterCells) != null && (n = as.length) > 0) { if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { // Try to attach new Cell CounterCell r = new CounterCell(x); // Optimistic create if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean created = false; try { // Recheck under lock CounterCell[] rs; int m, j; if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) break; continue; // Slot is now non-empty } } collide = false; } else if (!wasUncontended) // CAS already known to fail wasUncontended = true; // Continue after rehash else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) break; else if (counterCells != as || n >= NCPU) collide = false; // At max size or stale else if (!collide) collide = true; else if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { try { if (counterCells == as) {// Expand table unless stale CounterCell[] rs = new CounterCell[n << 1]; for (int i = 0; i < n; ++i) rs[i] = as[i]; counterCells = rs; } } finally { cellsBusy = 0; } collide = false; continue; // Retry with expanded table } h = ThreadLocalRandom.advanceProbe(h); } else if (cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean init = false; try { // Initialize table if (counterCells == as) { CounterCell[] rs = new CounterCell[2]; rs[h & 1] = new CounterCell(x); counterCells = rs; init = true; } } finally { cellsBusy = 0; } if (init) break; } else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) break; // Fall back on using base } } // ConcurrentHashMap.remove 刪除元素 /** * Implementation for the four public remove/replace methods: * Replaces node value with v, conditional upon match of cv if * non-null. If resulting value is null, delete. */ final V replaceNode(Object key, V value, Object cv) { int hash = spread(key.hashCode()); for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) break; else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; boolean validated = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { validated = true; for (Node<K,V> e = f, pred = null;;) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { V ev = e.val; if (cv == null || cv == ev || (ev != null && cv.equals(ev))) { oldVal = ev; if (value != null) e.val = value; // 刪除元素 else if (pred != null) pred.next = e.next; else setTabAt(tab, i, e.next); } break; } pred = e; if ((e = e.next) == null) break; } } else if (f instanceof TreeBin) { validated = true; TreeBin<K,V> t = (TreeBin<K,V>)f; TreeNode<K,V> r, p; if ((r = t.root) != null && (p = r.findTreeNode(hash, key, null)) != null) { V pv = p.val; if (cv == null || cv == pv || (pv != null && cv.equals(pv))) { oldVal = pv; if (value != null) p.val = value; // 刪除元素 else if (t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } } if (validated) { if (oldVal != null) { // value = null, 代表需要將元素刪除,所以需要對計數(shù)器做減1操作 if (value == null) addCount(-1L, -1); return oldVal; } break; } } } return null; }

          同樣是由于在增刪時,維護一個計數(shù)器(CounterCell數(shù)組), 所以對于返回計數(shù)值操作則會比較簡單化:

              // ConcurrentHashMap.size()    public int size() {        long n = sumCount();        return ((n < 0L) ? 0 :                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :                (int)n);    }    // 直接將 CounterCell 中的值相加起來即可    final long sumCount() {        CounterCell[] as = counterCells; CounterCell a;        long sum = baseCount;        if (as != null) {            for (int i = 0; i < as.length; ++i) {                if ((a = as[i]) != null)                    sum += a.value;            }        }        return sum;    }

          雖然ConcurrentHash的元素本身沒有使用分段式存儲了,但是其計數(shù)值還是存在了多個 CounterCell 中,目的自然是為了減少多線程競爭對計數(shù)器的更新成性能瓶頸。在進行 size() 計數(shù)時,并未有上鎖操作,整個 CounterCell 使用 volatile 修飾,保證其可見性,但是整個size 卻是不保證絕對準(zhǔn)確的哦。

          4. 并發(fā)容器 --ArrayBlockingQueue

          下面我們再來看看另一各類型的并發(fā)容器: ArrayBlockingQueue

              // ArrayBlockingQueue.offer()    /**     * Inserts the specified element at the tail of this queue if it is     * possible to do so immediately without exceeding the queue's capacity,     * returning {@code true} upon success and {@code false} if this queue     * is full.  This method is generally preferable to method {@link #add},     * which can fail to insert an element only by throwing an exception.     *     * @throws NullPointerException if the specified element is null     */    public boolean offer(E e) {        checkNotNull(e);        final ReentrantLock lock = this.lock;        // 直接上鎖操作        lock.lock();        try {            if (count == items.length)                return false;            else {                // 進行入隊操作                enqueue(e);                return true;            }        } finally {            lock.unlock();        }    }
          /** * Inserts element at current put position, advances, and signals. * Call only when holding lock. */ private void enqueue(E x) { // assert lock.getHoldCount() == 1; // assert items[putIndex] == null; final Object[] items = this.items; items[putIndex] = x; if (++putIndex == items.length) putIndex = 0; // 同樣,它還是通過一個 count 的計數(shù)器完成統(tǒng)計工作 count++; notEmpty.signal(); } // 移除動作時,也需要維護 count 的值 /** * Deletes item at array index removeIndex. * Utility for remove(Object) and iterator.remove. * Call only when holding lock. */ void removeAt(final int removeIndex) { // assert lock.getHoldCount() == 1; // assert items[removeIndex] != null; // assert removeIndex >= 0 && removeIndex < items.length; final Object[] items = this.items; if (removeIndex == takeIndex) { // removing front item; just advance items[takeIndex] = null; if (++takeIndex == items.length) takeIndex = 0; // 移除成功, 將計數(shù)器減1 count--; if (itrs != null) itrs.elementDequeued(); } else { // an "interior" remove
          // slide over all others up through putIndex. // 通過輪詢的方式, 必然有一個元素被刪除 final int putIndex = this.putIndex; for (int i = removeIndex;;) { int next = i + 1; if (next == items.length) next = 0; if (next != putIndex) { items[i] = items[next]; i = next; } else { items[i] = null; this.putIndex = i; break; } // 計數(shù)器相減 count--; if (itrs != null) itrs.removedAt(removeIndex); } notFull.signal(); }

          同樣是維護了一個計數(shù)器,但是因為有上鎖機制的保證,整個過程看起來就簡單了許多。在獲取元素大小時,自然也就簡單了.

              // ArrayBlockingQueue.size()    /**     * Returns the number of elements in this queue.     *     * @return the number of elements in this queue     */    public int size() {        final ReentrantLock lock = this.lock;        lock.lock();        try {            return count;        } finally {            lock.unlock();        }    }

          但是它為了保證結(jié)果的準(zhǔn)確性,在計數(shù)時,同樣進行了上鎖操作。可見,并發(fā)容器的實現(xiàn)思路也基本一致.并無太多奇淫技巧. 咱們再來看一下并發(fā)容器的實現(xiàn): CopyOnWriteArrayList

          5. 并發(fā)容器 --CopyOnWriteArrayList

          顧名思義,是在寫操作的時候,使用復(fù)制方式進行實現(xiàn)。

              // CopyOnWriteArrayList.add()    /**     * Appends the specified element to the end of this list.     *     * @param e element to be appended to this list     * @return {@code true} (as specified by {@link Collection#add})     */    public boolean add(E e) {        final ReentrantLock lock = this.lock;        // 同樣上鎖保證線程安全        lock.lock();        try {            Object[] elements = getArray();            int len = elements.length;            // 將元素copy出來, 但其并非維護一個len字段            Object[] newElements = Arrays.copyOf(elements, len + 1);            newElements[len] = e;            setArray(newElements);            return true;        } finally {            lock.unlock();        }    }    // CopyOnWriteArrayList, 刪除一個字段, 同其名稱一樣, 還是使用寫時復(fù)制實現(xiàn)     public E remove(int index) {        final ReentrantLock lock = this.lock;        lock.lock();        try {            Object[] elements = getArray();            int len = elements.length;            E oldValue = get(elements, index);            int numMoved = len - index - 1;            if (numMoved == 0)                setArray(Arrays.copyOf(elements, len - 1));            else {                // 找到移除的字段位置, 依次復(fù)制其前后元素到新數(shù)組中,完成功能                Object[] newElements = new Object[len - 1];                System.arraycopy(elements, 0, newElements, 0, index);                System.arraycopy(elements, index + 1, newElements, index,                                 numMoved);                setArray(newElements);            }            return oldValue;        } finally {            lock.unlock();        }    }

          // CopyOnWriteArrayList.size(), 直接使用數(shù)組長度字段 /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { // 獲取元素大小時,直接獲取所有元素,取數(shù)組的長度即可. 借用jvm提供的數(shù)組長度元信息實現(xiàn) return getArray().length; } /** * Gets the array. Non-private so as to also be accessible * from CopyOnWriteArraySet class. */ final Object[] getArray() { // 該array字段一定是要保證可見性的, 即至少得是 volatile 修飾的數(shù)據(jù) return array; }

          CopyOnWriteArrayList, 因為其語義決定,其在一定程度上是線程安全的,所以,在讀操作時,就不需要上鎖,從而性能在某些場景會比較好。

          根據(jù)功能特性的不同, CopyOnWriteArrayList 采用了一個不同實現(xiàn)方式, 實現(xiàn)了元素的統(tǒng)計功能. 另外像 SynchronousQueue#size, 則永久返回0, 因為它的定義是當(dāng)被放一個元素后,必須等到有線程消費之后才可返回,而其本身并不存儲元素. 所以, 雖然元素計數(shù)道理比較簡單通用, 但是還是要按照具體的場景進行相應(yīng)的實現(xiàn), 才能滿足具體的需求. 即不可脫離場景談技術(shù). 

          6. 更多計數(shù)

          類似數(shù)據(jù)庫類的產(chǎn)品,同樣的這樣的計數(shù)剛性需求,各自實現(xiàn)方式也有不同,但大體思路也差不多。比如 redis 的計數(shù)使用在計數(shù)時臨時遍歷元素實現(xiàn),mysql myisam 引擎使用一個表級的計數(shù)器等等。




          往期精彩推薦



          騰訊、阿里、滴滴后臺面試題匯總總結(jié) — (含答案)

          面試:史上最全多線程面試題 !

          最新阿里內(nèi)推Java后端面試題

          JVM難學(xué)?那是因為你沒認(rèn)真看完這篇文章


          END


          關(guān)注作者微信公眾號 —《JAVA爛豬皮》


          了解更多java后端架構(gòu)知識以及最新面試寶典


          你點的每個好看,我都認(rèn)真當(dāng)成了


          看完本文記得給作者點贊+在看哦~~~大家的支持,是作者源源不斷出文的動力


          作者:等你歸去來

          出處:https://www.cnblogs.com/yougewe/p/13238124.html


          瀏覽 34
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  激情内射网站 | 天堂色在线 | A一区二区免费视频 | 国产在线激情视频 | 秋霞网一曲二曲 |