<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          資源|機(jī)器學(xué)習(xí)/深度學(xué)習(xí)線上開(kāi)放課程集錦

          共 4677字,需瀏覽 10分鐘

           ·

          2020-08-12 15:40



          寫(xiě)在最前面


          本文整理了機(jī)器學(xué)習(xí)/深度學(xué)習(xí)比較優(yōu)秀的線上開(kāi)放課程,主要為了方便小伙伴們個(gè)人學(xué)習(xí)所用,目前機(jī)器學(xué)習(xí)與深度學(xué)習(xí)發(fā)展迅速,新的課程也層出不窮,所以本帖也會(huì)不定期更新,包括更新課程網(wǎng)址以及添加新的好課程。所以,各位小伙伴有比較好的課程一定要在評(píng)論區(qū)留言,我看到后會(huì)將其更新上來(lái),以分享給其它小伙伴。也歡迎留下你的贊!

          注意這里對(duì)各個(gè)課程并沒(méi)有做好與壞的評(píng)論,一般來(lái)說(shuō),入門(mén)機(jī)器學(xué)習(xí)的經(jīng)典課程是Stanford: CS229,入門(mén)深度學(xué)習(xí)的經(jīng)典課程是Stanford: CS231n。

          1

          Table of Contents


          • Deep Learning

          • Machine Learning

          • Reinforcement Learning

          • Computer Vision

          • Artificial Intelligence

          2

          Deep Learning


          1. [CMU: 11-785 Introduction to Deep Learning](http://deeplearning.cs.cmu.edu/) [Spring 2018] [DL]

          2. [Stanford: CS230 Deep Learning](https://web.stanford.edu/class/cs230/) [Winter 2018][DL] [[Ng中文筆記-黃海廣](http://www.ai-start.com/)]

          3. [University of Chicago: CMSC 35246 Deep Learning ](http://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html) [Spring 2017][DL]

          4. [Stanford: CS231n Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/) [Spring 2017][CV] [[中文翻譯](http://www.mooc.ai/course/268#modal)]

          5. [Stanford: CS224n Natural Language Processing with Deep Learning](http://web.stanford.edu/class/cs224n/) [Winter 2018][NLP]

          6. [Stanford: CS 20 Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/) [Winter 2018][TensorFlow]

          7. [Stanford: Theories of Deep Learning (STATS 385)](https://stats385.github.io/) [Fall 2017][DL]

          8. [CMU: 10707 Deep Learning](http://www.cs.cmu.edu/~rsalakhu/10707/) [Fall 2017][DL]

          9. [National Taiwan University: Applied Deep Learning /Machine Learning and Having It Deep and Structured](https://www.csie.ntu.edu.tw/~yvchen/f106-adl/) [2017 Fall][DL] [[Hung-yi Lee](http://speech.ee.ntu.edu.tw/~tlkagk/index.html)]

          10. [Theano: Deep Learning Tutorials](http://deeplearning.net/tutorial/) [Theano]

          11. [Mxnet: Deep Learning-The Straight Dope](http://gluon.mxnet.io/) [2017][Mxnet] [[中文](http://zh.gluon.ai/)]

          12. [MIT: 6.S191 Introduction to Deep Learning](http://introtodeeplearning.com/) [2018][DL]

          13. [UVA: DEEP LEARNING COURSE](http://uvadlc.github.io/) [DL]

          14. [Fast.ai: Practical Deep Learning For Coders](http://course.fast.ai/) [2018][DL]

          15. [CMU: CS 11-747 Neural networks fro NLP](http://phontron.com/class/nn4nlp2018/#) [Spring 2018][NLP]

          16. [Stanford: CS224S / LINGUIST285 - Spoken Language Processing](http://web.stanford.edu/class/cs224s/) [Spring 2017][Speech Recognition]

          17. [Berkeley: CS 294-131: Special Topics in Deep Learning](https://berkeley-deep-learning.github.io/cs294-131-f17/) [Fall 2017][Advanced DL]

          18. [CMU: 16-385 Computer Vision](http://www.cs.cmu.edu/~16385/) [Spring 2018][CV]

          19. [Columbia University: E6894 Deep Learning for Computer Vision, Speech, and Language](http://llcao.net/cu-deeplearning17/schedule.html) [Spring 2017][DL]

          20. [Colorado: CSCI 5922 Neural Networks and Deep Learning](https://www.cs.colorado.edu/~mozer/Teaching/syllabi/DeepLearningFall2017/) [Fall 2017][DL]

          21. [UIUC: CS 598 LAZ Cutting-Edge Trends in Deep Learning and Recognition](http://slazebni.cs.illinois.edu/spring17/) [2017][DL]

          22. [UPC: Deep Learning for Speech and Language](https://telecombcn-dl.github.io/2017-dlsl/) [2017 Winter][Speech Recognition]

          23. [toronto: CSC 321 Intro to Neural Networks and Machine Learning](http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/) [CSC 321 Winter 2018][DL]

          3

          Computer Vision


          1.[toronto: CSC420: Intro to Image Understanding](http://www.teach.cs.toronto.edu/~csc420h/fall/) [Fall 2017][CV]

          4

          Machine Learning


          1. [Stanford: CS229 Machine Learning](http://cs229.stanford.edu/) [Autumn 2017][ML]

          2. [University of Notre Dame: Statistical Computing for Scientists and Engineers](https://www.zabaras.com/statisticalcomputing) [Fall 2017][SL]

          3. [CMU: Statistical Machine Learning](http://www.stat.cmu.edu/~ryantibs/statml/) [Spring 2017][ML]

          4. [Carnegie Mellon University:10-701/15-781 Machine Learning](http://www.cs.cmu.edu/~tom/10701_sp11/) [Spring 2011][ML]

          5. [toronto: CSC411? introduction to Machine Learning](http://www.cs.toronto.edu/~jlucas/teaching/csc411/) [Fall 2017][ML]

          6. [MIT: 6.S099 Artificial General Intelligence](https://agi.mit.edu/) [2018]

          7. [MIT 6.S094: Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/) [2018]

          5

          Reinforcement Learning


          1. [Berkeley: CS 294 Deep Reinforcement Learning](http://rll.berkeley.edu/deeprlcourse/?utm_source=qq&utm_medium=social) [Fall 2017][RL]

          2. [CMU: 10703 Deep RL and Control](http://www.cs.cmu.edu/~rsalakhu/10703/) [Fall 2018][RL]

          3. [Stanford: CS234: Reinforcement Learning](http://web.stanford.edu/class/cs234/index.html?utm_source=wechat_session&utm_medium=social) [Winter 2018][RL]




          參考

          1. 深度學(xué)習(xí)名校課程大全:?https://zhuanlan.zhihu.com/p/33580103

          2. Awesome Deep Learning:?https://github.com/xiaohu2015/awesome-deep-learning











          機(jī)器學(xué)習(xí)算法全棧工程師


          ? ? ? ? ? ? ? ? ? ? ? ? ? ? 一個(gè)用心的公眾號(hào)

          長(zhǎng)按,識(shí)別,加關(guān)注

          進(jìn)群,學(xué)習(xí),得幫助

          你的關(guān)注,我們的熱度,

          我們一定給你學(xué)習(xí)最大的幫助



          瀏覽 59
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  五月天六月色婷婷在线 | 一区二区三区四区五区无码 | 日韩后入在线 | 91久久艹这里只有精品 | 大屌一区二区 |