深度學(xué)習(xí)實(shí)戰(zhàn)之布匹缺陷檢測(cè)
前言
缺陷檢測(cè)是工業(yè)上非常重要的一個(gè)應(yīng)用,由于缺陷多種多樣,傳統(tǒng)的機(jī)器視覺算法很難做到對(duì)缺陷特征完整的建模和遷移,復(fù)用性不大,要求區(qū)分工況,這會(huì)浪費(fèi)大量的人力成本。深度學(xué)習(xí)在特征提取和定位上取得了非常好的效果,越來越多的學(xué)者和工程人員開始將深度學(xué)習(xí)算法引入到缺陷檢測(cè)領(lǐng)域中。
導(dǎo)師一直鼓勵(lì)小編做一些小項(xiàng)目,將學(xué)習(xí)與動(dòng)手相結(jié)合。于是最近小編找來了某個(gè)大數(shù)據(jù)競(jìng)賽中的一道缺陷檢測(cè)題目,在開源目標(biāo)檢測(cè)框架的基礎(chǔ)上實(shí)現(xiàn)了一個(gè)用于布匹瑕疵檢測(cè)的模型?,F(xiàn)將過程稍作總結(jié),供各位同學(xué)參考。
問題簡(jiǎn)介
01
實(shí)際背景
布匹的疵點(diǎn)檢測(cè)是紡織工業(yè)中的一個(gè)十分重要的環(huán)節(jié)。當(dāng)前,在紡織工業(yè)的布匹缺陷檢測(cè)領(lǐng)域,人工檢測(cè)仍然是主要的質(zhì)量檢測(cè)方式。而近年來由于人力成本的提升,以及人工檢測(cè)存在的檢測(cè)速度慢、漏檢率高、一致性差、人員流動(dòng)率高等問題,越來越多的工廠開始利用機(jī)器來代替人工進(jìn)行質(zhì)檢,以提高生產(chǎn)效率,節(jié)省人力成本。
題目?jī)?nèi)容
開發(fā)出高效準(zhǔn)確的深度學(xué)習(xí)算法,檢驗(yàn)布匹表面是否存在缺陷,如果存在缺陷,請(qǐng)標(biāo)注出缺陷的類型和位置。
數(shù)據(jù)分析
? 題目數(shù)據(jù)集提供了9576張圖片用于訓(xùn)練,其中有瑕疵圖片5913張,無瑕疵圖片3663張。
? 瑕疵共分為15個(gè)類別。分別為:沾污、錯(cuò)花、水卬、花毛、縫頭、縫頭印、蟲粘、破洞、褶子、織疵、漏印、蠟斑、色差、網(wǎng)折、其它
? 尺寸:4096 * 1696

算法分享
02
1.框架選擇
比較流行的算法可以分為兩類,一類是基于Region Proposal的R-CNN系算法(R-CNN,F(xiàn)ast R-CNN, Faster R-CNN等),它們是two-stage的,需要先算法產(chǎn)生目標(biāo)候選框,也就是目標(biāo)位置,然后再對(duì)候選框做分類與回歸。而另一類是Yolo,SSD這類one-stage算法,其僅僅使用一個(gè)卷積神經(jīng)網(wǎng)絡(luò)CNN直接預(yù)測(cè)不同目標(biāo)的類別與位置。第一類方法是準(zhǔn)確度高一些,但是速度慢,但是第二類算法是速度快,但是準(zhǔn)確性要低一些??紤]本次任務(wù)時(shí)間限制和小編電腦性能,本次小編采用了單階段YOLOV5的方案。

YOLO直接在輸出層回歸bounding box的位置和bounding box所屬類別,從而實(shí)現(xiàn)one-stage。通過這種方式,Yolo可實(shí)現(xiàn)45幀每秒的運(yùn)算速度,完全能滿足實(shí)時(shí)性要求(達(dá)到24幀每秒,人眼就認(rèn)為是連續(xù)的)。
整個(gè)系統(tǒng)如下圖所示

2.環(huán)境配置(參考自 YOLOv5 requirements)
Cythonnumpy==1.17opencv-pythontorch>=1.4matplotlibpillowtensorboardPyYAML>=5.3torchvisionscipytqdmgit+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI
3.數(shù)據(jù)預(yù)處理
· 數(shù)據(jù)集文件結(jié)構(gòu)

· 標(biāo)注格式說明


· YOLO要求訓(xùn)練數(shù)據(jù)文件結(jié)構(gòu):


· 比賽數(shù)據(jù)格式 -> YOLO數(shù)據(jù)格式:
(針對(duì)本問題原創(chuàng)代碼)
for fold in [0]:val_index = index[len(index) * fold // 5:len(index) * (fold + 1) // 5]print(len(val_index))for num, name in enumerate(name_list):print(c_list[num], x_center_list[num], y_center_list[num], w_list[num], h_list[num])row = [c_list[num], x_center_list[num], y_center_list[num], w_list[num], h_list[num]]if name in val_index:path2save = 'val/'else:path2save = 'train/'if not os.path.exists('convertor/fold{}/labels/'.format(fold) + path2save):os.makedirs('convertor/fold{}/labels/'.format(fold) + path2save)with open('convertor/fold{}/labels/'.format(fold) + path2save + name.split('.')[0] + ".txt", 'a+') as f:for data in row:f.write('{} '.format(data))f.write('\n')if not os.path.exists('convertor/fold{}/images/{}'.format(fold, path2save)):os.makedirs('convertor/fold{}/images/{}'.format(fold, path2save))sh.copy(os.path.join(image_path, name.split('.')[0], name),'convertor/fold{}/images/{}/{}'.format(fold, path2save, name))
4.超參數(shù)設(shè)置(針對(duì)本問題原創(chuàng)代碼)
# Hyperparametershyp = {'lr0': 0.01,'momentum': 0.937, # SGD momentum'weight_decay': 5e-4,'giou': 0.05,'cls': 0.58,'cls_pw': 1.0,'obj': 1.0,'obj_pw': 1.0,'iou_t': 0.20,'anchor_t': 4.0,'fl_gamma': 0.0,'hsv_h': 0.014,'hsv_s': 0.68,'hsv_v': 0.36,'degrees': 0.0,'translate': 0.0,'scale': 0.5,'shear': 0.0}
5.模型核心代碼(針對(duì)本問題原創(chuàng)代碼)
import argparsefrom models.experimental import *class Detect(nn.Module):def __init__(self, nc=80, anchors=()):super(Detect, self).__init__()self.stride = Noneself.nc = ncself.no = nc + 5self.nl = len(anchors)self.na = len(anchors[0]) // 2 # number of anchorsself.grid = [torch.zeros(1)] * self.nla = torch.tensor(anchors).float().view(self.nl, -1, 2)self.register_buffer('anchors', a)self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))self.export = Falsedef forward(self, x):z = []self.training |= self.exportfor i in range(self.nl):bs, _, ny, nx = x[i].shapex[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:if self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i] = self._make_grid(nx, ny).to(x[i].device)y = x[i].sigmoid()y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)@staticmethoddef _make_grid(nx=20, ny=20):yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()class Model(nn.Module):def __init__(self, model_cfg='yolov5s.yaml', ch=3, nc=None):super(Model, self).__init__()if type(model_cfg) is dict:self.md = model_cfgelse:import yamlwith open(model_cfg) as f:self.md = yaml.load(f, Loader=yaml.FullLoader)# Define modelif nc and nc != self.md['nc']:print('Overriding %s nc=%g with nc=%g' % (model_cfg, self.md['nc'], nc))self.md['nc'] = ncself.model, self.save = parse_model(self.md, ch=[ch])# Build strides, anchorsm = self.model[-1] # Detect()if isinstance(m, Detect):s = 128 # 2x min stridem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])m.anchors /= m.stride.view(-1, 1, 1)check_anchor_order(m)self.stride = m.strideself._initialize_biases()# Init weights, biasestorch_utils.initialize_weights(self)self._initialize_biases()torch_utils.model_info(self)print('')def forward(self, x, augment=False, profile=False):if augment:img_size = x.shape[-2:] # height, widths = [0.83, 0.67] # scales #1.2 0.83y = []for i, xi in enumerate((x,torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scaletorch_utils.scale_img(x, s[1]), # scale)):# cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])y.append(self.forward_once(xi)[0])y[1][..., :4] /= s[0]y[1][..., 0] = img_size[1] - y[1][..., 0]y[2][..., :4] /= s[1]return torch.cat(y, 1), Noneelse:return self.forward_once(x, profile)def forward_once(self, x, profile=False):y, dt = [], []for m in self.model:if m.f != -1:x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]if profile:try:import thopo = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPSexcept:o = 0t = torch_utils.time_synchronized()for _ in range(10):_ = m(x)dt.append((torch_utils.time_synchronized() - t) * 100)print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))x = m(x)y.append(x if m.i in self.save else None)if profile:print('%.1fms total' % sum(dt))return xdef _initialize_biases(self, cf=None):m = self.model[-1] # Detect() modulefor f, s in zip(m.f, m.stride):mi = self.model[f % m.i]b = mi.bias.view(m.na, -1)b[:, 4] += math.log(8 / (640 / s) ** 2)b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1] # Detect() modulefor f in sorted([x % m.i for x in m.f]):b = self.model[f].bias.detach().view(m.na, -1).Tprint(('%g Conv2d.bias:' + '%10.3g' * 6) % (f, *b[:5].mean(1).tolist(), b[5:].mean()))def fuse(self):print('Fusing layers... ', end='')for m in self.model.modules():if type(m) is Conv:m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update convm.bn = None # remove batchnormm.forward = m.fuseforward # update forwardtorch_utils.model_info(self)return selfdef parse_model(md, ch): # model_dict, input_channels(3)print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))anchors, nc, gd, gw = md['anchors'], md['nc'], md['depth_multiple'], md['width_multiple']na = (len(anchors[0]) // 2) # number of anchorsno = na * (nc + 5)layers, save, c2 = [], [], ch[-1]for i, (f, n, m, args) in enumerate(md['backbone'] + md['head']):m = eval(m) if isinstance(m, str) else mfor j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else aexcept:passn = max(round(n * gd), 1) if n > 1 else nif m in [nn.Conv2d, Conv, PW_Conv,Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, BottleneckMOB]:c1, c2 = ch[f], args[0]# Normal# c2 = int(ch[1] * ex ** e)c2 = make_divisible(c2 * gw, 8) if c2 != no else c2# Experimental# ch1 = 32# c2 = int(ch1 * ex ** e)# c2 = make_divisible(c2, 8) if c2 != no else c2args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3]:args.insert(2, n)n = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])elif m is Detect:f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))else:c2 = ch[f]m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args)t = str(m)[8:-2].replace('__main__.', '') # module typenp = sum([x.numel() for x in m_.parameters()]) # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number paramsprint('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args))save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)layers.append(m_)ch.append(c2)return nn.Sequential(*layers), sorted(save)if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')opt = parser.parse_args()opt.cfg = check_file(opt.cfg) # check filedevice = torch_utils.select_device(opt.device)# Create modelmodel = Model(opt.cfg).to(device)model.train()

訓(xùn)練截圖
6.測(cè)試模型并生成結(jié)果(針對(duì)本問題原創(chuàng)代碼)
for *xyxy, conf, cls in det:if save_txt: # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /gn).view(-1).tolist() # normalized xywhwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * 5 + '\n') %(cls, *xywh)) # label format# write to jsonif save_json:name = os.path.split(txt_path)[-1]print(name)x1, y1, x2, y2 = float(xyxy[0]), float(xyxy[1]), float(xyxy[2]), float(xyxy[3])bbox = [x1, y1, x2, y2]img_name = nameconf = float(conf)#add solution remove otherresult.append({'name': img_name + '.jpg','category': int(cls + 1),'bbox': bbox,'score': conf})
7.結(jié)果展示

后記
03
針對(duì)布匹瑕疵檢測(cè)問題,我們首先分析了題目要求,確定了我們的任務(wù)是檢測(cè)到布匹中可能存在的瑕疵,對(duì)其進(jìn)行分類并將其在圖片中標(biāo)注出來。接下來針對(duì)問題要求我們選擇了合適的目標(biāo)檢測(cè)框架YOLOv5,并按照YOLOv5的格式要求對(duì)數(shù)據(jù)集和標(biāo)注進(jìn)行了轉(zhuǎn)換。然后我們根據(jù)問題規(guī)模設(shè)置了合適的超參數(shù),采用遷移學(xué)習(xí)的思想,基于官方的預(yù)訓(xùn)練模型進(jìn)行訓(xùn)練以加快收斂速度。模型訓(xùn)練好以后,即可在驗(yàn)證集上驗(yàn)證我們模型的性能和準(zhǔn)確性。
—版權(quán)聲明—
來源:數(shù)據(jù)魔術(shù)師 作者:張宇
僅用于學(xué)術(shù)分享,版權(quán)屬于原作者。
若有侵權(quán),請(qǐng)聯(lián)系微信號(hào):yiyang-sy 刪除或修改!
