嵌入式狀態(tài)機編程-QP狀態(tài)機框架與常見狀態(tài)機方法
來源:取經(jīng)的孫猴兒
狀態(tài)機基本術(shù)語
現(xiàn)態(tài):是指當(dāng)前所處的狀態(tài)。條件:又稱為“事件”,當(dāng)一個條件被滿足,將會觸發(fā)一個動作,或者執(zhí)行一次狀態(tài)的遷移。動作:條件滿足后執(zhí)行的動作。動作執(zhí)行完畢后,可以遷移到新的狀態(tài),也可以仍舊保持原狀態(tài)。
動作不是必需的,當(dāng)條件滿足后,也可以不執(zhí)行任何動作,直接遷移到新狀態(tài)。次態(tài):條件滿足后要遷往的新狀態(tài)。“次態(tài)”是相對于“現(xiàn)態(tài)”而言的,“次態(tài)”一旦被激活,就轉(zhuǎn)變成新的“現(xiàn)態(tài)”了。

傳統(tǒng)有限狀態(tài)機Fsm實現(xiàn)方法

如圖,是一個定時計數(shù)器,計數(shù)器存在兩種狀態(tài),一種為設(shè)置狀態(tài),一種為計時狀態(tài)
設(shè)置狀態(tài)
“+” “-” 按鍵對初始倒計時進行設(shè)置 當(dāng)計數(shù)值設(shè)置完成,點擊確認鍵啟動計時 ,即切換到計時狀態(tài)
計時狀態(tài)
按下“+” “-” 會進行密碼的輸入。“+”表示1 ,“-”表示輸入0 ,密碼共有4位?
確認鍵:只有輸入的密碼等于默認密碼,按確認鍵才能停止計時,否則計時直接到零,并執(zhí)行相關(guān)操作
嵌套switch
??????/***************************************
??????1.列出所有的狀態(tài)
??????***************************************/
??????typedef?enum{
??????????SETTING,
??????????TIMING
??????}STATE_TYPE;
??????/***************************************
??????2.列出所有的事件
??????***************************************/
??????typedef?enum{
?????????UP_EVT,
??????????DOWN_EVT,
??????????ARM_EVT,
??????????TICK_EVT
??????}EVENT_TYPE;
??????/***************************************
??????3.定義和狀態(tài)機相關(guān)結(jié)構(gòu)
??????***************************************/
??????struct??bomb
??????{
??????????uint8_t?state;
??????????uint8_t?timeout;
??????????uint8_t?code;
??????????uint8_t?defuse_code;
??????}bomb1;
??????/***************************************
??????4.初始化狀態(tài)機
??????***************************************/
??????void?bomb1_init(void)
??????{
??????????bomb1.state?=?SETTING;
??????????bomb1.defuse_code?=?6;????//0110?
??????}
??????/***************************************
??????5.?狀態(tài)機事件派發(fā)
??????***************************************/
??????void?bomb1_fsm_dispatch(EVENT_TYPE?evt?,void*?param)
??????{
??????????switch(bomb1.state)
??????????{
??????????????case?SETTING:
??????????????{
??????????????????switch(evt)
??????????????????{
??????????????????????case?UP_EVT:????//?"+"???按鍵按下事件
????????????????????????if(bomb1.timeout60)??++bomb1.timeout;
??????????????????????????bsp_display(bomb1.timeout);
??????????????????????break;
??????????????????????case?DOWN_EVT:??//?"-"???按鍵按下事件
??????????????????????????if(bomb1.timeout?>?0)??--bomb1.timeout;
??????????????????????????bsp_display(bomb1.timeout);
??????????????????????break;
??????????????????????case?ARM_EVT:???//?"確認"?按鍵按下事件
??????????????????????????bomb1.state?=?TIMING;
??????????????????????????bomb1.code??=?0;
??????????????????????break;
??????????????????}
??????????????}?break;?
??????????????case?TIMING:
??????????????{
??????????????????switch(evt)
??????????????????{
??????????????????????case?UP_EVT:????//?"+"???按鍵按下事件
?????????????????????????bomb1.code?=?(bomb1.code?<<1)?|0x01;
??????????????????????break;
??????????????????????case?DOWN_EVT:??//?"-"???按鍵按下事件
??????????????????????????bomb1.code?=?(bomb1.code?<<1);?
??????????????????????break;
??????????????????????case?ARM_EVT:???//?"確認"?按鍵按下事件
??????????????????????????if(bomb1.code?==?bomb1.defuse_code){
??????????????????????????????bomb1.state?=?SETTING;
??????????????????????????}
??????????????????????????else{
???????????????????????????bsp_display("bomb!")
??????????????????????????}
??????????????????????break;
??????????????????????case?TICK_EVT:
??????????????????????????if(bomb1.timeout)
??????????????????????????{
??????????????????????????????--bomb1.timeout;
??????????????????????????????bsp_display(bomb1.timeout);
??????????????????????????}
??????????????????????????if(bomb1.timeout?==?0)
??????????????????????????{
??????????????????????????????bsp_display("bomb!")
??????????????????????????}
??????????????????????break;
??????????????????}???
??????????????}break;
??????????}
??????}

優(yōu)點:
簡單,代碼閱讀連貫,容易理解
缺點
當(dāng)狀態(tài)或事件增多時,代碼狀態(tài)函數(shù)需要經(jīng)常改動,狀態(tài)事件處理函數(shù)會代碼量會不斷增加
狀態(tài)機沒有進行封裝,移植性差。
沒有實現(xiàn)狀態(tài)的進入和退出的操作。進入和退出在狀態(tài)機中尤為重要
進入事件:只會在剛進入時觸發(fā)一次,主要作用是對狀態(tài)進行必要的初始化
退出事件:只會在狀態(tài)切換時觸發(fā)一次 ,主要的作用是清除狀態(tài)產(chǎn)生的中間參數(shù),為下次進入提供干凈環(huán)境
狀態(tài)表
二維狀態(tài)轉(zhuǎn)換表
狀態(tài)機可以分為狀態(tài)和事件 ,狀態(tài)的躍遷都是受事件驅(qū)動的,因此可以通過一個二維表格來表示狀態(tài)的躍遷。

(*) 僅當(dāng)( code == defuse_code) 時才發(fā)生到setting 的轉(zhuǎn)換。
??????/*1.列出所有的狀態(tài)*/
??????enum
??????{
??????????SETTING,
??????????TIMING,
??????????MAX_STATE
??????};
??????/*2.列出所有的事件*/
??????enum
??????{
??????????UP_EVT,
??????????DOWN_EVT,
??????????ARM_EVT,
??????????TICK_EVT,
??????????MAX_EVT
??????};
??????
??????/*3.定義狀態(tài)表*/
??????typedef?void?(*fp_state)(EVT_TYPE?evt?,?void*?param);
??????static??const?fp_state??bomb2_table[MAX_STATE][MAX_EVENT]?=
??????{
??????????{setting_UP?,?setting_DOWN?,?setting_ARM?,?null},
??????????{setting_UP?,?setting_DOWN?,?setting_ARM?,?timing_TICK}
??????};
??????
??????struct?bomb_t
??????{
??????????const?fp_state?const?*state_table;?/*?the?State-Table?*/
??????????uint8_t?state;?/*?the?current?active?state?*/
??????????
??????????uint8_t?timeout;
??????????uint8_t?code;
??????????uint8_t?defuse_code;
??????};
??????struct?bomb?bomb2=
??????{
??????????.state_table?=?bomb2_table;
??????}
??????void?bomb2_init(void)
??????{
??????????bomb2.defuse_code?=?6;?//?0110
??????????bomb2.state?=?SETTING;
??????}
??????
??????void?bomb2_dispatch(EVT_TYPE?evt?,?void*?param)
??????{
??????????fp_state??s?=?NULL;
??????????if(evt?>?MAX_EVT)
??????????{
??????????????LOG("EVT?type?error!");
??????????????return;
??????????}
??????????s?=?bomb2.state_table[bomb2.state?*?MAX_EVT?+?evt];
??????????if(s?!=?NULL)
??????????{
??????????????s(evt?,?param);
??????????}
??????}
??????/*列出所有的狀態(tài)對應(yīng)的事件處理函數(shù)*/
??????void?setting_UP(EVT_TYPE?evt,?void*?param)
??????{
??????????if(bomb1.timeout60)??++bomb1.timeout;
??????????bsp_display(bomb1.timeout);
??????}
優(yōu)點
各個狀態(tài)面向用戶相對獨立,增加事件和狀態(tài)不需要去修改先前已存在的狀態(tài)事件函數(shù)。
可將狀態(tài)機進行封裝,有較好的移植性 函數(shù)指針的安全轉(zhuǎn)換 , 利用下面的特性,用戶可以擴展帶有私有屬性的狀態(tài)機和事件而使用統(tǒng)一的基礎(chǔ)狀態(tài)機接口
typedef?void?(*Tran)(struct?StateTableTag?*me,?Event?const?*e);
void?Bomb2_setting_ARM?(Bomb2?*me,?Event?const?*e);
typedef?struct?Bomb
{
???struct?StateTableTag?*me;??//必須為第一個成員
????uint8_t?private;
}
缺點
函數(shù)粒度太小是最明顯的一個缺點,一個狀態(tài)和一個事件就會產(chǎn)生一個函數(shù),當(dāng)狀態(tài)和事件較多時,處理函數(shù)將增加很快,在閱讀代碼時,邏輯分散。
沒有實現(xiàn)進入退出動作。
一維狀態(tài)轉(zhuǎn)換表

實現(xiàn)原理:

?typedef?void?(*fp_action)(EVT_TYPE?evt,void*?param);
????
????/*轉(zhuǎn)換表基礎(chǔ)結(jié)構(gòu)*/
????struct?tran_evt_t
????{
???????EVT_TYPE?evt;
????????uint8_t?next_state;
????};
????/*狀態(tài)的描述*/
????struct??fsm_state_t
????{
????????fp_action??enter_action;??????//進入動作
????????fp_action??exit_action;???//退出動作
????????fp_action??action;???????????
????????
????????tran_evt_t*?tran;????//轉(zhuǎn)換表
????????uint8_t?????tran_nb;?//轉(zhuǎn)換表的大小
????????const?char*?name;
????}
????/*狀態(tài)表本體*/
????#define??ARRAY(x)???x,sizeof(x)/sizeof(x[0])
????const?struct??fsm_state_t??state_table[]=
????{
????????{setting_enter?,?setting_exit?,?setting_action?,?ARRAY(set_tran_evt),"setting"?},
????????{timing_enter?,?timing_exit?,?timing_action?,?ARRAY(time_tran_evt),"timing"?}
????};
????
????/*構(gòu)建一個狀態(tài)機*/
????struct?fsm
????{
????????const?struct?state_t?*?state_table;?/*?the?State-Table?*/
????????uint8_t?cur_state;??????????????????????/*?the?current?active?state?*/
????????
????????uint8_t?timeout;
????????uint8_t?code;
????????uint8_t?defuse_code;
????}bomb3;
????
????/*初始化狀態(tài)機*/
????void??bomb3_init(void)
????{
????????bomb3.state_table?=?state_table;??//指向狀態(tài)表
????????bomb3.cur_state?=?setting;
????????bomb3.defuse_code?=?8;?//1000
????}
????/*狀態(tài)機事件派發(fā)*/
????void??fsm_dispatch(EVT_TYPE?evt?,?void*?param)
????{
????????tran_evt_t*?p_tran?=?NULL;
????????
????????/*獲取當(dāng)前狀態(tài)的轉(zhuǎn)換表*/
????????p_tran?=?bomb3.state_table[bomb3.cur_state]->tran;
????????
????????/*判斷所有可能的轉(zhuǎn)換是否與當(dāng)前觸發(fā)的事件匹配*/
????????for(uint8_t?i=0;i????????{
????????????if(p_tran[i]->evt?==?evt)//事件會觸發(fā)轉(zhuǎn)換
????????????{
????????????????if(NULL?!=?bomb3.state_table[bomb3.cur_state].exit_action){
??????????????bomb3.state_table[bomb3.cur_state].exit_action(NULL);??//執(zhí)行退出動作
?????????????}
????????????????if(bomb3.state_table[_tran[i]->next_state].enter_action){
???????????????????bomb3.state_table[_tran[i]->next_state].enter_action(NULL);//執(zhí)行進入動作
????????????????}
????????????????/*更新當(dāng)前狀態(tài)*/
????????????????bomb3.cur_state?=?p_tran[i]->next_state;
????????????}
????????????else
????????????{
?????????????????bomb3.state_table[bomb3.cur_state].action(evt,param);
????????????}
????????}
????}
????/*************************************************************************
????setting狀態(tài)相關(guān)
????************************************************************************/
????void?setting_enter(EVT_TYPE?evt?,?void*?param)
????{
????????
????}
????void?setting_exit(EVT_TYPE?evt?,?void*?param)
????{
????????
????}
????void?setting_action(EVT_TYPE?evt?,?void*?param)
????{
????????
????}
????tran_evt_t?set_tran_evt[]=
????{
????????{ARM?,?timing},
????}
????/*timing?狀態(tài)相關(guān)*/
優(yōu)點
各個狀態(tài)面向用戶相對獨立,增加事件和狀態(tài)不需要去修改先前已存在的狀態(tài)事件函數(shù)。
實現(xiàn)了狀態(tài)的進入和退出
容易根據(jù)狀態(tài)躍遷圖來設(shè)計 (狀態(tài)躍遷圖列出了每個狀態(tài)的躍遷可能,也就是這里的轉(zhuǎn)換表)
實現(xiàn)靈活,可實現(xiàn)復(fù)雜邏輯,如上一次狀態(tài),增加監(jiān)護條件來減少事件的數(shù)量。可實現(xiàn)非完全事件驅(qū)動
缺點
函數(shù)粒度較?。ū榷S小且增長慢),可以看到,每一個狀態(tài)需要至少3個函數(shù),還需要列出所有的轉(zhuǎn)換關(guān)系。
QP嵌入式實時框架
特點
事件驅(qū)動型編程
好萊塢原則:和傳統(tǒng)的順序式編程方法例如“超級循環(huán)”,或傳統(tǒng)的RTOS 的任務(wù)不同。絕大多數(shù)的現(xiàn)代事件驅(qū)動型系統(tǒng)根據(jù)好萊塢原則被構(gòu)造,(Don’t call me; I’ll call you.)
面向?qū)ο?/h4>
類和單一繼承。

工具
QM ,一個通過UML類圖來描述狀態(tài)機的軟件,并且可以自動生成C代碼:

QS軟件追蹤工具:


QEP實現(xiàn)有限狀態(tài)機Fsm

????/*?qevent.h?----------------------------------------------------------------*/
??????typedef?struct?QEventTag?
??????{??
????????QSignal?sig;?????
???????uint8_t?dynamic_;??
??????}?QEvent;
??????/*?qep.h?-------------------------------------------------------------------*/
??????typedef?uint8_t?QState;?/*?status?returned?from?a?state-handler?function?*/
??????typedef?QState?(*QStateHandler)?(void?*me,?QEvent?const?*e);?/*?argument?list?*/
??????typedef?struct?QFsmTag???/*?Finite?State?Machine?*/
??????{?
????????QStateHandler?state;?????/*?current?active?state?*/
??????}QFsm;
??????
??????#define?QFsm_ctor(me_,?initial_)?((me_)->state?=?(initial_))
??????void?QFsm_init?(QFsm?*me,?QEvent?const?*e);
??????void?QFsm_dispatch(QFsm?*me,?QEvent?const?*e);
??????
??????#define?Q_RET_HANDLED?((QState)0)
??????#define?Q_RET_IGNORED?((QState)1)
??????#define?Q_RET_TRAN?((QState)2)
??????#define?Q_HANDLED()?(Q_RET_HANDLED)
??????#define?Q_IGNORED()?(Q_RET_IGNORED)
??????
???????#define?Q_TRAN(target_)?(((QFsm?*)me)->state?=?(QStateHandler)???(target_),Q_RET_TRAN)
??????
??????enum?QReservedSignals
??????{
??????????Q_ENTRY_SIG?=?1,?
????????Q_EXIT_SIG,?
????????Q_INIT_SIG,?
????????Q_USER_SIG?
??????};
??????
??????/*?file?qfsm_ini.c?---------------------------------------------------------*/
??????#include?"qep_port.h"?/*?the?port?of?the?QEP?event?processor?*/
??????#include?"qassert.h"?/*?embedded?systems-friendly?assertions?*/
??????void?QFsm_init(QFsm?*me,?QEvent?const?*e)?
??????{
??????????(*me->state)(me,?e);?/*?execute?the?top-most?initial?transition?*/
???????/*?enter?the?target?*/
????????(void)(*me->state)(me?,?&QEP_reservedEvt_[Q_ENTRY_SIG]);
??????}
??????/*?file?qfsm_dis.c?---------------------------------------------------------*/
??????void?QFsm_dispatch(QFsm?*me,?QEvent?const?*e)
??????{
??????????QStateHandler?s?=?me->state;?/*?save?the?current?state?*/
????????QState?r?=?(*s)(me,?e);?/*?call?the?event?handler?*/
????????if?(r?==?Q_RET_TRAN)??/*?transition?taken??*/
??????????{
??????????(void)(*s)(me,?&QEP_reservedEvt_[Q_EXIT_SIG]);?/*?exit?the?source?*/
??????????(void)(*me->state)(me,?&QEP_reservedEvt_[Q_ENTRY_SIG]);/*enter?target*/
???????}
??????}
??實現(xiàn)上面定時器例子
??????#include?"qep_port.h"?/*?the?port?of?the?QEP?event?processor?*/
??????#include?"bsp.h"?/*?board?support?package?*/
??????
??????enum?BombSignals?/*?all?signals?for?the?Bomb?FSM?*/
??????{?
??????????UP_SIG?=?Q_USER_SIG,
??????????DOWN_SIG,
??????????ARM_SIG,
??????????TICK_SIG
??????};
??????typedef?struct?TickEvtTag?
??????{
????????QEvent?super;??????/*?derive?from?the?QEvent?structure?*/
????????uint8_t?fine_time;?/*?the?fine?1/10?s?counter?*/
??????}TickEvt;
??????
??????typedef?struct?Bomb4Tag?
??????{
????????QFsm?super;???/*?derive?from?QFsm?*/
????????uint8_t?timeout;?/*?number?of?seconds?till?explosion?*/
?????????uint8_t?code;????/*?currently?entered?code?to?disarm?the?bomb?*/
?????????uint8_t?defuse;??/*?secret?defuse?code?to?disarm?the?bomb?*/
??????}?Bomb4;
??????
??????void?Bomb4_ctor?(Bomb4?*me,?uint8_t?defuse);
??????QState?Bomb4_initial(Bomb4?*me,?QEvent?const?*e);
??????QState?Bomb4_setting(Bomb4?*me,?QEvent?const?*e);
??????QState?Bomb4_timing?(Bomb4?*me,?QEvent?const?*e);
??????/*--------------------------------------------------------------------------*/
??????/*?the?initial?value?of?the?timeout?*/
??????#define?INIT_TIMEOUT?10
??????/*..........................................................................*/
??????void?Bomb4_ctor(Bomb4?*me,?uint8_t?defuse)?{
???????QFsm_ctor_(&me->super,?(QStateHandler)&Bomb4_initial);
????????me->defuse?=?defuse;?/*?the?defuse?code?is?assigned?at?instantiation?*/
??????}
??????/*..........................................................................*/
??????QState?Bomb4_initial(Bomb4?*me,?QEvent?const?*e)?{
???????(void)e;
???????me->timeout?=?INIT_TIMEOUT;
???????return?Q_TRAN(&Bomb4_setting);
??????}
??????/*..........................................................................*/
??????QState?Bomb4_setting(Bomb4?*me,?QEvent?const?*e)?{
???????switch?(e->sig){
????????case?UP_SIG:{
?????????if?(me->timeout?60)?{
??????????++me->timeout;
??????????BSP_display(me->timeout);
?????????}
??????????????????return?Q_HANDLED();
????????}
????????case?DOWN_SIG:?{
?????????if?(me->timeout?>?1)?{
??????????--me->timeout;
??????????BSP_display(me->timeout);
?????????}
?????????return?Q_HANDLED();
????????}
????????case?ARM_SIG:?{
?????????return?Q_TRAN(&Bomb4_timing);?/*?transition?to?"timing"?*/
????????}
???????}
???????return?Q_IGNORED();
??????}
??????/*..........................................................................*/
??????void?Bomb4_timing(Bomb4?*me,?QEvent?const?*e)?{
???????switch?(e->sig)?{
????????case?Q_ENTRY_SIG:?{
?????????me->code?=?0;?/*?clear?the?defuse?code?*/
?????????return?Q_HANDLED();
??????????????}
????????case?UP_SIG:?{
?????????me->code?<<=?1;
?????????me->code?|=?1;
?????????return?Q_HANDLED();
??????????????}
????????case?DOWN_SIG:?{
?????????me->code?<<=?1;
?????????return?Q_HANDLED();
????????}
????????case?ARM_SIG:?{
?????????if?(me->code?==?me->defuse)?{
??????????return?Q_TRAN(&Bomb4_setting);
?????????}
?????????return?Q_HANDLED();
????????}
????????case?TICK_SIG:?{
?????????if?(((TickEvt?const?*)e)->fine_time?==?0)?{
??????????--me->timeout;
??????????BSP_display(me->timeout);
??????????if?(me->timeout?==?0)?{
??????????BSP_boom();?/*?destroy?the?bomb?*/
??????????}
?????????}
?????????return?Q_HANDLED();
????????}
???????}
???????return?Q_IGNORED();
??????}
優(yōu)點
采用面向?qū)ο蟮脑O(shè)計方法,很好的移植性 實現(xiàn)了進入退出動作 合適的粒度,且事件的粒度可控 狀態(tài)切換時通過改變指針,效率高 可擴展成為層次狀態(tài)機
缺點
對事件的定義以及事件粒度的控制是設(shè)計的最大難點,如串口接收到一幀數(shù)據(jù),這些變量的更新單獨作為某個事件,還是串口收到數(shù)據(jù)作為一個事件。再或者顯示屏,如果使用此種編程方式,如何設(shè)計事件。
QP 實現(xiàn)層次狀態(tài)機 Hsm簡介

初始化:

初始化層次狀態(tài)機的實現(xiàn):在初始化時,用戶所選取的狀態(tài)永遠是最底層的狀態(tài),如上圖,我們在計算器開機后,應(yīng)該進入的是開始狀態(tài),這就涉及到一個問題,由最初top(頂狀態(tài))到begin 是有一條狀態(tài)切換路徑的,當(dāng)我們設(shè)置狀態(tài)為begin如何搜索這條路徑成為關(guān)鍵(知道了路徑才能正確的進入begin,要執(zhí)行路徑中過渡狀態(tài)的進入和退出事件)
void?QHsm_init(QHsm?*me,?QEvent?const?*e)?
????{
?????Q_ALLEGE((*me->state)(me,?e)?==?Q_RET_TRAN);
????????t?=?(QStateHandler)&QHsm_top;?/*?HSM?starts?in?the?top?state?*/
??????do?{?/*?drill?into?the?target...?*/
??????QStateHandler?path[QEP_MAX_NEST_DEPTH_];
???????int8_t?ip?=?(int8_t)0;?/*?transition?entry?path?index?*/
???????path[0]?=?me->state;?/*?這里的狀態(tài)為begin?*/
????????????
????????????/*通過執(zhí)行空信號,從底層狀態(tài)找到頂狀態(tài)的路徑*/
????????(void)QEP_TRIG_(me->state,?QEP_EMPTY_SIG_);
????????while?(me->state?!=?t)?{
?????????path[++ip]?=?me->state;
???????(void)QEP_TRIG_(me->state,?QEP_EMPTY_SIG_);
??????}
????????????/*切換為begin*/
???????me->state?=?path[0];?/*?restore?the?target?of?the?initial?tran.?*/
??????/*?鉆到最底層的狀態(tài),執(zhí)行路徑中的所有進入事件?*/
????????Q_ASSERT(ip?(int8_t)QEP_MAX_NEST_DEPTH_);
??????do?{?/*?retrace?the?entry?path?in?reverse?(desired)?order...?*/
??????????QEP_ENTER_(path[ip]);?/*?enter?path[ip]?*/
???????}?while?((--ip)?>=?(int8_t)0);
????????????
????????t?=?path[0];?/*?current?state?becomes?the?new?source?*/
???????}?while?(QEP_TRIG_(t,?Q_INIT_SIG)?==?Q_RET_TRAN);
??????me->state?=?t;
????}
狀態(tài)切換:

?/*.................................................................*/
????QState?result(Calc?*me,?QEvent?const?*e)?
????{
????????switch?(e->sig)?
????????{you
????????????case?ENTER_SIG:{
????????????????break;
????????????}
????????????case?EXIT_SIG:{
?????????????break;
????????????}
?????????case?C_SIG:?
????????????{
??????????printf("clear");????
????????????????return?Q_HANDLED();
????????????}
????????????case?B_SIG:
????????????{??
????????????????return?Q_TRAN(&begin);
????????????}
?????}
?????return?Q_SUPER(&reday);
????}
????/*.ready為result和begin的超狀態(tài)................................................*/
????QState?ready(Calc?*me,?QEvent?const?*e)?
????{
????????switch?(e->sig)?
????????{
????????????case?ENTER_SIG:{
????????????????break;
????????????}
????????????case?EXIT_SIG:{
?????????????break;
????????????}
????????????case?OPER_SIG:
????????????{??
????????????????return?Q_TRAN(&opEntered);
????????????}
?????}
?????return?Q_SUPER(&on);
????}
????void?QHsm_dispatch(QHsm?*me,?QEvent?const?*e)?
????{
????????QStateHandler?path[QEP_MAX_NEST_DEPTH_];
?????QStateHandler?s;
?????QStateHandler?t;
?????QState?r;
?????t?=?me->state;?????/*?save?the?current?state?*/
?????do?{???????/*?process?the?event?hierarchically...?*/
??????s?=?me->state;
??????r?=?(*s)(me,?e);???/*?invoke?state?handler?s?*/
?????}?while?(r?==?Q_RET_SUPER);?//當(dāng)前狀態(tài)不能處理事件?,直到找到能處理事件的狀態(tài)
????????
?????if?(r?==?Q_RET_TRAN)?{?????/*?transition?taken??*/
??????int8_t?ip?=?(int8_t)(-1);???/*?transition?entry?path?index?*/
??????int8_t?iq;???????/*?helper?transition?entry?path?index?*/
??????path[0]?=?me->state;????/*?save?the?target?of?the?transition?*/
?????????path[1]?=?t;
??????while?(t?!=?s)?{???/*?exit?current?state?to?transition?source?s...?*/
???????if?(QEP_TRIG_(t,?Q_EXIT_SIG)?==?Q_RET_HANDLED)?{/*exit?handled??*/
????????(void)QEP_TRIG_(t,?QEP_EMPTY_SIG_);?/*?find?superstate?of?t?*/
???????}
???????t?=?me->state;???/*?me->state?holds?the?superstate?*/
??????}
??????.?.?.
?????}
?????me->state?=?t;?????/*?set?new?state?or?restore?the?current?state?*/
????}

?t?=?path[0];?/*?target?of?the?transition?*/
????????if?(s?==?t)?{?/*?(a)?check?source==target?(transition?to?self)?*/
?????????????QEP_EXIT_(s)?/*?exit?the?source?*/
?????????????ip?=?(int8_t)0;?/*?enter?the?target?*/
?????????}
?????????else?{
?????????????(void)QEP_TRIG_(t,?QEP_EMPTY_SIG_);?/*?superstate?of?target?*/
?????????????t?=?me->state;
?????????????if?(s?==?t)?{?/*?(b)?check?source==target->super?*/
??????????????????ip?=?(int8_t)0;?/*?enter?the?target?*/
????????????}
?????????????else?{
?????????????????(void)QEP_TRIG_(s,?QEP_EMPTY_SIG_);?/*?superstate?of?src?*/
?????????????????/*?(c)?check?source->super==target->super?*/
?????????????????if(me->state?==?t)?{
?????????????????????QEP_EXIT_(s)?/*?exit?the?source?*/
?????????????????????ip?=?(int8_t)0;?/*?enter?the?target?*/
??????????????????}
??????????????????else?{
???????????????????????/*?(d)?check?source->super==target?*/
???????????????????????if?(me->state?==?path[0])?{
??????????????????????????QEP_EXIT_(s)?/*?exit?the?source?*/
???????????????????????}
???????????????????????else?{?/*?(e)?check?rest?of?source==target->super->super..
???????????????????????????*?and?store?the?entry?path?along?the?way?*/
????????????????????????....
QP實時框架的組成


內(nèi)存管理
使用內(nèi)存池,對于低性能mcu,內(nèi)存極為有限,引入內(nèi)存管理主要是整個架構(gòu)中,是以事件作為主要的任務(wù)通信手段,且事件是帶參數(shù)的,可能相同類型的事件會多次觸發(fā),而事件處理完成后,需要清除事件,無法使用靜態(tài)的事件,因此是有必要為不同事件創(chuàng)建內(nèi)存池的。
對于不同塊大小的內(nèi)存池,需要考慮的是每個塊的起始地址對齊問題。在進行內(nèi)存池初始化時,我們是根據(jù)blocksize+header大小來進行劃分內(nèi)存池的。假設(shè)一個2字節(jié)的結(jié)構(gòu),如果以2來進行劃分,假設(shè)mcu 4字節(jié)對齊,那么將有一半的結(jié)構(gòu)起始地址無法對齊,這時需要為每個塊預(yù)留空間,保證每個塊的對齊。
事件隊列
每一個活動對象維護一個事件隊列,事件都是由基礎(chǔ)事件派生的,不同類型的事件只需要將其基礎(chǔ)事件成員添加到活動對象的隊列中即可,最終在取出的時候通過一個強制轉(zhuǎn)換便能獲得附加的參數(shù)。

事件派發(fā)
直接事件發(fā)送:
QActive_postLIFO()
發(fā)行訂閱事件發(fā)送:
豎軸表示信號(為事件的基類)
活動對象支持64個優(yōu)先級,每一個活動對象要求擁有唯一優(yōu)先級
通過優(yōu)先級的bit位來表示某個事件被哪些活動對象訂閱,并在事件觸發(fā)后根據(jù)優(yōu)先級為活動對象派發(fā)事件。

定時事件
非有序鏈表:

合作式調(diào)度器QV:

QP nano的簡介
完全支持層次式狀態(tài)嵌套,包括在最多4 層狀態(tài)嵌套情況下,對任何狀態(tài)轉(zhuǎn)換拓撲的可保 證的進入/ 退出動作 支持高達8 個并發(fā)執(zhí)行的,可確定的,線程安全的事件隊列的活動對象57 支持一個字節(jié)寬( 255 個信號)的信號,和一個可伸縮的參數(shù),它可被配置成0 (沒有參 數(shù)), 1 , 2 或4 字節(jié) 使用先進先出FIFO排隊策略的直接事件派發(fā)機制 每個活動對象有一個一次性時間事件(定時器),它的可配置動態(tài)范圍是0(沒有時間事 件) , 1 , 2 或4 字節(jié) 內(nèi)建的合作式vanilla 內(nèi)核 內(nèi)建的名為QK-nano 的可搶占型RTC內(nèi)核(見第六章6.3.8節(jié)) 帶有空閑回調(diào)函數(shù)的低功耗架構(gòu),用來方便的實現(xiàn)節(jié)省功耗模式。 在代碼里為流行的低端CPU架構(gòu)的C編譯器的非標(biāo)準(zhǔn)擴展進行了準(zhǔn)備(例如,在代碼空 間分配常數(shù)對象,可重入函數(shù),等等) 基于斷言的錯誤處理策略
代碼風(fēng)格:





參考資料
http://www.state-machine.com/ (QP官網(wǎng))
來源:https://blog.csdn.net/qq_36969440/article/details/110387716
版權(quán)歸原作者所有。如涉及作品版權(quán)問題,請聯(lián)系我進行刪除,感謝~
???????????????? ?END ?????????????????
關(guān)注我的微信公眾號,回復(fù)“加群”按規(guī)則加入技術(shù)交流群。
點擊“閱讀原文”查看更多分享,歡迎點分享、收藏、點贊、在看。
