Papers with Code 2020 頂尖論文和代碼回顧
轉(zhuǎn)載自:AI公園
作者:Ross Taylor
編譯:ronghuaiyang
2020年P(guān)apers with Code?中最頂流的論文,代碼和benchmark。
Papers with Code 中收集了各種機器學習的內(nèi)容:論文,代碼,結(jié)果,方便發(fā)現(xiàn)和比較。通過這些數(shù)據(jù),我們可以了解ML社區(qū)中,今年哪些東西最有意思。下面我們總結(jié)了2020年最熱門的帶代碼的論文、代碼庫和benchmark。
2020頂流論文

EfficientDet: Scalable and Efficient Object Detection — Tan et al https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object Fixing the train-test resolution discrepancy — Touvron et al https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2 ResNeSt: Split-Attention Networks — Zhang et al https://paperswithcode.com/paper/resnest-split-attention-networks Big Transfer (BiT) — Kolesnikov et al https://paperswithcode.com/paper/large-scale-learning-of-general-visual Object-Contextual Representations for Semantic Segmentation — Yuan et al https://paperswithcode.com/paper/object-contextual-representations-for Self-training with Noisy Student improves ImageNet classification — Xie et al https://paperswithcode.com/paper/self-training-with-noisy-student-improves YOLOv4: Optimal Speed and Accuracy of Object Detection — Bochkovskiy et al https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale — Dosovitskiy et al https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer — Raffel et al https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning Hierarchical Multi-Scale Attention for Semantic Segmentation — Tao et al https://paperswithcode.com/paper/hierarchical-multi-scale-attention-for
2020頂流代碼庫

Transformers — Hugging Face — https://github.com/huggingface/transformers PyTorch Image Models — Ross Wightman — https://github.com/rwightman/pytorch-image-models Detectron2 — FAIR — https://github.com/facebookresearch/detectron2 InsightFace — DeepInsight — https://github.com/deepinsight/insightface Imgclsmob — osmr — https://github.com/osmr/imgclsmob DarkNet — pjreddie — https://github.com/pjreddie/darknet PyTorchGAN — Erik Linder-Norén — https://github.com/eriklindernoren/PyTorch-GAN MMDetection — OpenMMLab — https://github.com/open-mmlab/mmdetection FairSeq — PyTorch — https://github.com/pytorch/fairseq Gluon CV — DMLC — https://github.com/dmlc/gluon-cv
2020頂流Benchmarks

ImageNet — Image Classification — https://paperswithcode.com/sota/image-classification-on-imagenet COCO — Object Detection / Instance Segmentation — https://paperswithcode.com/sota/object-detection-on-coco Cityscapes — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes CIFAR-10 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-10 CIFAR-100 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-100 PASCAL VOC 2012 — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012 MPII Human Pose — Pose Estimation — https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose Market-1501 — Person Re-Identification — https://paperswithcode.com/sota/person-re-identification-on-market-1501 MNIST — Image Classification — https://paperswithcode.com/sota/image-classification-on-mnist Human 3.6M — Human Pose Estimation -https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose
往期精彩:
【原創(chuàng)首發(fā)】機器學習公式推導與代碼實現(xiàn)30講.pdf
【原創(chuàng)首發(fā)】深度學習語義分割理論與實戰(zhàn)指南.pdf
求個在看
評論
圖片
表情
