<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          CVPR 2021 論文和開(kāi)源項(xiàng)目合集(Papers with Code)

          共 13809字,需瀏覽 28分鐘

           ·

          2021-03-13 15:30



          【CVPR 2021 論文開(kāi)源目錄】

          https://github.com/amusi/CVPR2021-Papers-with-Code


          • Backbone

          • NAS

          • GAN

          • Visual Transformer

          • 自監(jiān)督(Self-Supervised)

          • 目標(biāo)檢測(cè)(Object Detection)

          • 實(shí)例分割(Instance Segmentation)

          • 全景分割(Panoptic Segmentation)

          • 視頻理解/行為識(shí)別(Video Understanding)

          • 人臉識(shí)別(Face Recognition)

          • 人臉活體檢測(cè)(Face Anti-Spoofing)

          • Deepfake檢測(cè)(Deepfake Detection)

          • 人臉年齡估計(jì)(Age-Estimation)

          • 人臉解析(Human Parsing)

          • 超分辨率(Super-Resolution)

          • 圖像恢復(fù)(Image Restoration)

          • 3D目標(biāo)檢測(cè)(3D Object Detection)

          • 3D語(yǔ)義分割(3D Semantic Segmentation)

          • 3D目標(biāo)跟蹤(3D Object Tracking)

          • 3D點(diǎn)云配準(zhǔn)(3D Point Cloud Registration)

          • 6D位姿估計(jì)(6D Pose Estimation)

          • 深度估計(jì)(Depth Estimation)

          • 對(duì)抗樣本(Adversarial-Examples)

          • 圖像檢索(Image Retrieval)

          • Zero-Shot Learning

          • 視覺(jué)推理(Visual Reasoning)

          • "人-物"交互(HOI)檢測(cè)

          • 陰影去除(Shadow Removal)

          • 數(shù)據(jù)集(Datasets)

          • 其他(Others)

          • 不確定中沒(méi)中(Not Sure)



          Backbone

          Coordinate Attention for Efficient Mobile Network Design

          • Paper: https://arxiv.org/abs/2103.02907

          • Code: https://github.com/Andrew-Qibin/CoordAttention

          Inception Convolution with Efficient Dilation Search

          • Paper: https://arxiv.org/abs/2012.13587

          • Code: None

          RepVGG: Making VGG-style ConvNets Great Again

          • Paper: https://arxiv.org/abs/2101.03697

          • Code: https://github.com/DingXiaoH/RepVGG


          NAS

          Inception Convolution with Efficient Dilation Search

          • Paper: https://arxiv.org/abs/2012.13587

          • Code: None


          GAN

          Training Generative Adversarial Networks in One Stage

          • Paper: https://arxiv.org/abs/2103.00430

          • Code: None

          Closed-Form Factorization of Latent Semantics in GANs

          • Homepage: https://genforce.github.io/sefa/

          • Paper: https://arxiv.org/abs/2007.06600

          • Code: https://github.com/genforce/sefa

          Anycost GANs for Interactive Image Synthesis and Editing

          • Paper: https://arxiv.org/abs/2103.03243

          • Code: https://github.com/mit-han-lab/anycost-gan

          Image-to-image Translation via Hierarchical Style Disentanglement

          • Paper: https://arxiv.org/abs/2103.01456

          • Code: https://github.com/imlixinyang/HiSD


          Visual Transformer

          End-to-End Video Instance Segmentation with Transformers

          • Paper(Oral): https://arxiv.org/abs/2011.14503

          • Code: None

          UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

          • Paper(Oral): https://arxiv.org/abs/2011.09094

          • Code: https://github.com/dddzg/up-detr

          End-to-End Human Object Interaction Detection with HOI Transformer

          • Paper: https://arxiv.org/abs/2103.04503

          • Code: https://github.com/bbepoch/HoiTransformer

          Transformer Interpretability Beyond Attention Visualization

          • Paper: https://arxiv.org/abs/2012.09838

          • Code: https://github.com/hila-chefer/Transformer-Explainability


          自監(jiān)督

          Dense Contrastive Learning for Self-Supervised Visual Pre-Training

          • Paper: https://arxiv.org/abs/2011.09157

          • Code: https://github.com/WXinlong/DenseCL


          目標(biāo)檢測(cè)(Object Detection)

          UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

          • Paper(Oral): https://arxiv.org/abs/2011.09094

          • Code: https://github.com/dddzg/up-detr

          General Instance Distillation for Object Detection

          • Paper: https://arxiv.org/abs/2103.02340

          • Code: None

          Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection

          • Paper: https://arxiv.org/abs/2103.01903

          • Code: None

          There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

          • Homepage: http://rl.uni-freiburg.de/research/multimodal-distill

          • Paper: https://arxiv.org/abs/2103.01353

          • Code: http://rl.uni-freiburg.de/research/multimodal-distill

          Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection

          • Paper: https://arxiv.org/abs/2011.12885

          • Code: https://github.com/implus/GFocalV2

          Multiple Instance Active Learning for Object Detection

          • Paper: https://github.com/yuantn/MIAL/raw/master/paper.pdf

          • Code: https://github.com/yuantn/MIAL

          Towards Open World Object Detection

          • Paper: https://arxiv.org/abs/2103.02603

          • Code: https://github.com/JosephKJ/OWOD


          實(shí)例分割(Instance Segmentation)

          End-to-End Video Instance Segmentation with Transformers

          • Paper(Oral): https://arxiv.org/abs/2011.14503

          • Code: None

          Zero-shot instance segmentation(Not Sure)

          • Paper: None

          • Code: https://github.com/CVPR2021-pape-id-1395/CVPR2021-paper-id-1395


          全景分割(Panoptic Segmentation)

          Cross-View Regularization for Domain Adaptive Panoptic Segmentation

          • Paper: https://arxiv.org/abs/2103.02584

          • Code: None


          視頻理解/行為識(shí)別(Video Understanding)

          TDN: Temporal Difference Networks for Efficient Action Recognition

          • Paper: https://arxiv.org/abs/2012.10071

          • Code: https://github.com/MCG-NJU/TDN


          人臉識(shí)別(Face Recognition)

          WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition

          • Homepage: https://www.face-benchmark.org/

          • Paper: https://arxiv.org/abs/2103.04098

          • Dataset: https://www.face-benchmark.org/

          When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework

          • Paper(Oral): https://arxiv.org/abs/2103.01520

          • Code: https://github.com/Hzzone/MTLFace

          • Dataset: https://github.com/Hzzone/MTLFace


          人臉活體檢測(cè)(Face Anti-Spoofing)

          Cross Modal Focal Loss for RGBD Face Anti-Spoofing

          • Paper: https://arxiv.org/abs/2103.00948

          • Code: None


          Deepfake檢測(cè)(Deepfake Detection)

          Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain

          • Paper:https://arxiv.org/abs/2103.01856

          • Code: None

          Multi-attentional Deepfake Detection

          • Paper:https://arxiv.org/abs/2103.02406

          • Code: None


          人臉年齡估計(jì)(Age Estimation)

          PML: Progressive Margin Loss for Long-tailed Age Classification

          • Paper: https://arxiv.org/abs/2103.02140

          • Code: None


          人體解析(Human Parsing)

          Differentiable Multi-Granularity Human Representation Learning for Instance-Aware Human Semantic Parsing

          • Paper: https://arxiv.org/abs/2103.04570

          • Code: https://github.com/tfzhou/MG-HumanParsing


          超分辨率(Super-Resolution)

          ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

          • Paper: https://arxiv.org/abs/2103.04039

          • Code: https://github.com/Xiangtaokong/ClassSR

          AdderSR: Towards Energy Efficient Image Super-Resolution

          • Paper: https://arxiv.org/abs/2009.08891

          • Code: None


          圖像恢復(fù)(Image Restoration)

          Multi-Stage Progressive Image Restoration

          • Paper: https://arxiv.org/abs/2102.02808

          • Code: https://github.com/swz30/MPRNet


          3D目標(biāo)檢測(cè)(3D Object Detection)

          SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud

          • Paper: None

          • Code: https://github.com/Vegeta2020/SE-SSD

          Center-based 3D Object Detection and Tracking

          • Paper: https://arxiv.org/abs/2006.11275

          • Code: https://github.com/tianweiy/CenterPoint

          Categorical Depth Distribution Network for Monocular 3D Object Detection

          • Paper: https://arxiv.org/abs/2103.01100

          • Code: None


          3D語(yǔ)義分割(3D Semantic Segmentation)

          Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges

          • Homepage: https://github.com/QingyongHu/SensatUrban

          • Paper: http://arxiv.org/abs/2009.03137

          • Code: https://github.com/QingyongHu/SensatUrban

          • Dataset: https://github.com/QingyongHu/SensatUrban


          3D目標(biāo)跟蹤(3D Object Trancking)

          Center-based 3D Object Detection and Tracking

          • Paper: https://arxiv.org/abs/2006.11275

          • Code: https://github.com/tianweiy/CenterPoint


          3D點(diǎn)云配準(zhǔn)(3D Point Cloud Registration)

          PREDATOR: Registration of 3D Point Clouds with Low Overlap

          • Paper: https://arxiv.org/abs/2011.13005

          • Code: https://github.com/ShengyuH/OverlapPredator


          6D位姿估計(jì)(6D Pose Estimation)

          FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation

          • Paper: https://arxiv.org/abs/2103.02242

          • Code: https://github.com/ethnhe/FFB6D


          深度估計(jì)

          Depth from Camera Motion and Object Detection

          • Paper: https://arxiv.org/abs/2103.01468

          • Code: https://github.com/griffbr/ODMD

          • Dataset: https://github.com/griffbr/ODMD


          對(duì)抗樣本

          Natural Adversarial Examples

          • Paper: https://arxiv.org/abs/1907.07174

          • Code: https://github.com/hendrycks/natural-adv-examples


          圖像檢索(Image Retrieval)

          QAIR: Practical Query-efficient Black-Box Attacks for Image Retrieval

          • Paper: https://arxiv.org/abs/2103.02927

          • Code: None


          Zero-Shot Learning

          Counterfactual Zero-Shot and Open-Set Visual Recognition

          • Paper: https://arxiv.org/abs/2103.00887

          • Code: https://github.com/yue-zhongqi/gcm-cf


          視覺(jué)推理(Visual Reasoning)

          Transformation Driven Visual Reasoning

          • homepage: https://hongxin2019.github.io/TVR/

          • Paper: https://arxiv.org/abs/2011.13160

          • Code: https://github.com/hughplay/TVR


          "人-物"交互(HOI)檢測(cè)

          End-to-End Human Object Interaction Detection with HOI Transformer

          • Paper: https://arxiv.org/abs/2103.04503

          • Code: https://github.com/bbepoch/HoiTransformer


          陰影去除(Shadow Removal)

          Auto-Exposure Fusion for Single-Image Shadow Removal

          • Paper: https://arxiv.org/abs/2103.01255

          • Code: https://github.com/tsingqguo/exposure-fusion-shadow-removal


          數(shù)據(jù)集(Datasets)

          Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food

          • Paper: https://arxiv.org/abs/2103.03375

          • Dataset: None

          Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges

          • Homepage: https://github.com/QingyongHu/SensatUrban

          • Paper: http://arxiv.org/abs/2009.03137

          • Code: https://github.com/QingyongHu/SensatUrban

          • Dataset: https://github.com/QingyongHu/SensatUrban

          When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework

          • Paper(Oral): https://arxiv.org/abs/2103.01520

          • Code: https://github.com/Hzzone/MTLFace

          • Dataset: https://github.com/Hzzone/MTLFace

          Depth from Camera Motion and Object Detection

          • Paper: https://arxiv.org/abs/2103.01468

          • Code: https://github.com/griffbr/ODMD

          • Dataset: https://github.com/griffbr/ODMD

          There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

          • Homepage: http://rl.uni-freiburg.de/research/multimodal-distill

          • Paper: https://arxiv.org/abs/2103.01353

          • Code: http://rl.uni-freiburg.de/research/multimodal-distill

          Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

          • Paper: https://arxiv.org/abs/2012.02206

          • Code: https://github.com/daveredrum/Scan2Cap

          • Dataset: https://github.com/daveredrum/ScanRefer

          There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

          • Paper: https://arxiv.org/abs/2103.01353

          • Code: http://rl.uni-freiburg.de/research/multimodal-distill

          • Dataset: http://rl.uni-freiburg.de/research/multimodal-distill


          其他(Others)

          Knowledge Evolution in Neural Networks

          • Paper(Oral): https://arxiv.org/abs/2103.05152

          • Code: https://github.com/ahmdtaha/knowledge_evolution

          Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning

          • Paper: https://arxiv.org/abs/2103.02148

          • Code: https://github.com/guopengf/FLMRCM

          SGP: Self-supervised Geometric Perception

          • Oral

          • Paper: https://arxiv.org/abs/2103.03114

          • Code: https://github.com/theNded/SGP

          Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning

          • Paper: https://arxiv.org/abs/2103.02148

          • Code: https://github.com/guopengf/FLMRCM

          Diffusion Probabilistic Models for 3D Point Cloud Generation

          • Paper: https://arxiv.org/abs/2103.01458

          • Code: https://github.com/luost26/diffusion-point-cloud

          Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

          • Paper: https://arxiv.org/abs/2012.02206

          • Code: https://github.com/daveredrum/Scan2Cap

          • Dataset: https://github.com/daveredrum/ScanRefer

          There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

          • Paper: https://arxiv.org/abs/2103.01353

          • Code: http://rl.uni-freiburg.de/research/multimodal-distill

          • Dataset: http://rl.uni-freiburg.de/research/multimodal-distill


          不確定中沒(méi)中(Not Sure)

          CT Film Recovery via Disentangling Geometric Deformation and Photometric Degradation: Simulated Datasets and Deep Models

          • Paper: none

          • Code: https://github.com/transcendentsky/Film-Recovery

          Toward Explainable Reflection Removal with Distilling and Model Uncertainty

          • Paper: none

          • Code: https://github.com/ytpeng-aimlab/CVPR-2021-Toward-Explainable-Reflection-Removal-with-Distilling-and-Model-Uncertainty

          DeepOIS: Gyroscope-Guided Deep Optical Image Stabilizer Compensation

          • Paper: none

          • Code: https://github.com/lhaippp/DeepOIS

          Exploring Adversarial Fake Images on Face Manifold

          • Paper: none

          • Code: https://github.com/ldz666666/Style-atk

          Uncertainty-Aware Semi-Supervised Crowd Counting via Consistency-Regularized Surrogate Task

          • Paper: none

          • Code: https://github.com/yandamengdanai/Uncertainty-Aware-Semi-Supervised-Crowd-Counting-via-Consistency-Regularized-Surrogate-Task

          Temporal Contrastive Graph for Self-supervised Video Representation Learning

          • Paper: none

          • Code: https://github.com/YangLiu9208/TCG

          Boosting Monocular Depth Estimation Models to High-Resolution via Context-Aware Patching

          • Paper: none

          • Code: https://github.com/ouranonymouscvpr/cvpr2021_ouranonymouscvpr

          Fast and Memory-Efficient Compact Bilinear Pooling

          • Paper: none

          • Code: https://github.com/cvpr2021kp2/cvpr2021kp2

          Identification of Empty Shelves in Supermarkets using Domain-inspired Features with Structural Support Vector Machine

          • Paper: none

          • Code: https://github.com/gapDetection/cvpr2021

          Estimating A Child's Growth Potential From Cephalometric X-Ray Image via Morphology-Aware Interactive Keypoint Estimation

          • Paper: none

          • Code: https://github.com/interactivekeypoint2020/Morph

          https://github.com/ShaoQiangShen/CVPR2021

          https://github.com/gillesflash/CVPR2021

          https://github.com/anonymous-submission1991/BaLeNAS

          https://github.com/cvpr2021dcb/cvpr2021dcb

          https://github.com/anonymousauthorCV/CVPR2021_PaperID_8578

          https://github.com/AldrichZeng/FreqPrune

          https://github.com/Anonymous-AdvCAM/Anonymous-AdvCAM

          https://github.com/ddfss/datadrive-fss


          瀏覽 59
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  最会潮吹的小护士露比来了上篇顶级色影 | 亚洲欧美一级二级三级 | 亚洲成人综合最新 | 天天综合视频 | 国产精品 A片在线 |