<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          基于pytorch的resnet

          共 3910字,需瀏覽 8分鐘

           ·

          2021-04-09 16:08

          import torch
          import torch.nn as nn
          import torch.nn.functional as F


          class BasicBlock(nn.Module):
          expansion = 1
          def __init__(self, in_planes, planes, stride=1):
          super(BasicBlock, self).__init__()
          self.conv1 = nn.Conv2d(
          in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
          self.bn1 = nn.BatchNorm2d(planes)
          self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
          stride=1, padding=1, bias=False)
          self.bn2 = nn.BatchNorm2d(planes)

          self.shortcut = nn.Sequential()
          if stride != 1 or in_planes != self.expansion*planes:
          self.shortcut = nn.Sequential(
          nn.Conv2d(in_planes, self.expansion*planes,
          kernel_size=1, stride=stride, bias=False),
          nn.BatchNorm2d(self.expansion*planes)
          )

          def forward(self, x):
          out = F.relu(self.bn1(self.conv1(x)))
          out = self.bn2(self.conv2(out))
          out += self.shortcut(x)
          out = F.relu(out)
          return out


          class Bottleneck(nn.Module):
          expansion = 4
          def __init__(self, in_planes, planes, stride=1):
          super(Bottleneck, self).__init__()
          self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
          self.bn1 = nn.BatchNorm2d(planes)
          self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
          stride=stride, padding=1, bias=False)
          self.bn2 = nn.BatchNorm2d(planes)
          self.conv3 = nn.Conv2d(planes, self.expansion *
          planes, kernel_size=1, bias=False)
          self.bn3 = nn.BatchNorm2d(self.expansion*planes)

          self.shortcut = nn.Sequential()
          if stride != 1 or in_planes != self.expansion*planes:
          self.shortcut = nn.Sequential(
          nn.Conv2d(in_planes, self.expansion*planes,
          kernel_size=1, stride=stride, bias=False),
          nn.BatchNorm2d(self.expansion*planes)
          )

          def forward(self, x):
          out = F.relu(self.bn1(self.conv1(x)))
          out = F.relu(self.bn2(self.conv2(out)))
          out = self.bn3(self.conv3(out))
          out += self.shortcut(x)
          out = F.relu(out)
          return out


          class ResNet(nn.Module):
          def __init__(self, block, num_blocks, num_classes=10):
          super(ResNet, self).__init__()
          self.in_planes = 64
          self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
          stride=1, padding=1, bias=False)
          self.bn1 = nn.BatchNorm2d(64)
          self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
          self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
          self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
          self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
          self.linear = nn.Linear(512*block.expansion, num_classes)

          def _make_layer(self, block, planes, num_blocks, stride):
          strides = [stride] + [1]*(num_blocks-1)
          layers = []
          for stride in strides:
          layers.append(block(self.in_planes, planes, stride))
          self.in_planes = planes * block.expansion
          return nn.Sequential(*layers)

          def forward(self, x):
          out = F.relu(self.bn1(self.conv1(x)))
          out = self.layer1(out)
          out = self.layer2(out)
          out = self.layer3(out)
          out = self.layer4(out)
          out = F.avg_pool2d(out, 4)
          out = out.view(out.size(0), -1)
          out = self.linear(out)
          return out


          def ResNet18():
          return ResNet(BasicBlock, [2, 2, 2, 2])


          def ResNet34():
          return ResNet(BasicBlock, [3, 4, 6, 3])


          def ResNet50():
          return ResNet(Bottleneck, [3, 4, 6, 3])


          def ResNet101():
          return ResNet(Bottleneck, [3, 4, 23, 3])


          def ResNet152():
          return ResNet(Bottleneck, [3, 8, 36, 3])


          瀏覽 97
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  精品免费一区二区三区在线赤裸 | A色V| 吖v在线观看 | 久久这里 | 操逼电影视频 |