Go中的HTTP請求之——HTTP1.1請求流程分析
前言
http是目前應用最為廣泛, 也是程序員接觸最多的協(xié)議之一。今天筆者站在GoPher的角度對http1.1的請求流程進行全面的分析。希望讀者讀完此文后, 能夠有以下幾個收獲:
對http1.1的請求流程有一個大概的了解
在平時的開發(fā)中能夠更好地重用底層TCP連接
對http1.1的線頭阻塞能有一個更清楚的認識
HTTP1.1流程
今天內(nèi)容較多, 廢話不多說, 直接上干貨。

接下來, 筆者將根據(jù)流程圖,對除了NewRequest以外的函數(shù)進行逐步的展開和分析
(*Client).do
(*Client).do方法的核心代碼是一個沒有結(jié)束條件的for循環(huán)。
for {
// For all but the first request, create the next
// request hop and replace req.
if len(reqs) > 0 {
loc := resp.Header.Get("Location")
// ...此處省略代碼...
err = c.checkRedirect(req, reqs)
// ...此處省略很多代碼...
}
reqs = append(reqs, req)
var err error
var didTimeout func() bool
if resp, didTimeout, err = c.send(req, deadline); err != nil {
// c.send() always closes req.Body
reqBodyClosed = true
// ...此處省略代碼...
return nil, uerr(err)
}
var shouldRedirect bool
redirectMethod, shouldRedirect, includeBody = redirectBehavior(req.Method, resp, reqs[0])
if !shouldRedirect {
return resp, nil
}
req.closeBody()
}
上面的代碼中, 請求第一次進入會調(diào)用c.send, 得到響應后會判斷請求是否需要重定向, 如果需要重定向則繼續(xù)循環(huán), 否則返回響應。
進入重定向流程后, 這里筆者簡單介紹一下checkRedirect函數(shù):
func defaultCheckRedirect(req *Request, via []*Request) error {
if len(via) >= 10 {
return errors.New("stopped after 10 redirects")
}
return nil
}
// ...
func (c *Client) checkRedirect(req *Request, via []*Request) error {
fn := c.CheckRedirect
if fn == nil {
fn = defaultCheckRedirect
}
return fn(req, via)
}
由上可知, 用戶可以自己定義重定向的檢查規(guī)則。如果用戶沒有自定義檢查規(guī)則, 則重定向次數(shù)不能超過10次。
(*Client).send
(*Client).send方法邏輯較為簡單, 主要看用戶有沒有為http.Client的Jar字段實現(xiàn)CookieJar接口。主要流程如下:
如果實現(xiàn)了CookieJar接口, 為Request添加保存的cookie信息。
調(diào)用
send函數(shù)。如果實現(xiàn)了CookieJar接口, 將Response中的cookie信息保存下來。
// didTimeout is non-nil only if err != nil.
func (c *Client) send(req *Request, deadline time.Time) (resp *Response, didTimeout func() bool, err error) {
if c.Jar != nil {
for _, cookie := range c.Jar.Cookies(req.URL) {
req.AddCookie(cookie)
}
}
resp, didTimeout, err = send(req, c.transport(), deadline)
if err != nil {
return nil, didTimeout, err
}
if c.Jar != nil {
if rc := resp.Cookies(); len(rc) > 0 {
c.Jar.SetCookies(req.URL, rc)
}
}
return resp, nil, nil
}
另外, 我們還需要關(guān)注c.transport()的調(diào)用。如果用戶未對http.Client指定Transport則會使用go默認的DefaultTransport。
該Transport實現(xiàn)RoundTripper接口。在go中RoundTripper的定義為“執(zhí)行單個HTTP事務的能力,獲取給定請求的響應”。
func (c *Client) transport() RoundTripper {
if c.Transport != nil {
return c.Transport
}
return DefaultTransport
}
send
send函數(shù)會檢查request的URL,以及參數(shù)的rt, 和header值。如果URL和rt為nil則直接返回錯誤。同時, 如果請求中設置了用戶信息, 還會檢查并設置basic的驗證頭信息,最后調(diào)用rt.RoundTrip得到請求的響應。
func send(ireq *Request, rt RoundTripper, deadline time.Time) (resp *Response, didTimeout func() bool, err error) {
req := ireq // req is either the original request, or a modified fork
// ...此處省略代碼...
if u := req.URL.User; u != nil && req.Header.Get("Authorization") == "" {
username := u.Username()
password, _ := u.Password()
forkReq()
req.Header = cloneOrMakeHeader(ireq.Header)
req.Header.Set("Authorization", "Basic "+basicAuth(username, password))
}
if !deadline.IsZero() {
forkReq()
}
stopTimer, didTimeout := setRequestCancel(req, rt, deadline)
resp, err = rt.RoundTrip(req)
if err != nil {
// ...此處省略代碼...
return nil, didTimeout, err
}
// ...此處省略代碼...
return resp, nil, nil
}
(*Transport).RoundTrip
(*Transport).RoundTrip的邏輯很簡單,它會調(diào)用(*Transport).roundTrip方法,因此本節(jié)實際上是對(*Transport).roundTrip方法的分析。
func (t *Transport) RoundTrip(req *Request) (*Response, error) {
return t.roundTrip(req)
}
func (t *Transport) roundTrip(req *Request) (*Response, error) {
// ...此處省略校驗header頭和headervalue的代碼以及其他代碼...
for {
select {
case <-ctx.Done():
req.closeBody()
return nil, ctx.Err()
default:
}
// treq gets modified by roundTrip, so we need to recreate for each retry.
treq := &transportRequest{Request: req, trace: trace}
cm, err := t.connectMethodForRequest(treq)
// ...此處省略代碼...
pconn, err := t.getConn(treq, cm)
if err != nil {
t.setReqCanceler(req, nil)
req.closeBody()
return nil, err
}
var resp *Response
if pconn.alt != nil {
// HTTP/2 path.
t.setReqCanceler(req, nil) // not cancelable with CancelRequest
resp, err = pconn.alt.RoundTrip(req)
} else {
resp, err = pconn.roundTrip(treq)
}
if err == nil {
return resp, nil
}
// ...此處省略判斷是否重試請求的代碼邏輯...
}
}
由上可知, 每次for循環(huán), 會判斷請求上下文是否已經(jīng)取消, 如果沒有取消則繼續(xù)進行后續(xù)的流程。
先調(diào)用
t.getConn方法獲取一個persistConn。因為本篇主旨是http1.1,所以我們直接看http1.1的執(zhí)行分支。根據(jù)源碼中的注釋和實際的debug結(jié)果,獲取到連接后, 會繼續(xù)調(diào)用
pconn.roundTrip。
(*Transport).getConn
筆者認為這一步在http請求中是非常核心的一個步驟,因為只有和server端建立連接后才能進行后續(xù)的通信。
func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (pc *persistConn, err error) {
req := treq.Request
trace := treq.trace
ctx := req.Context()
// ...此處省略代碼...
w := &wantConn{
cm: cm,
key: cm.key(),
ctx: ctx,
ready: make(chan struct{}, 1),
beforeDial: testHookPrePendingDial,
afterDial: testHookPostPendingDial,
}
// ...此處省略代碼...
// Queue for idle connection.
if delivered := t.queueForIdleConn(w); delivered {
pc := w.pc
// ...此處省略代碼...
return pc, nil
}
cancelc := make(chan error, 1)
t.setReqCanceler(req, func(err error) { cancelc <- err })
// Queue for permission to dial.
t.queueForDial(w)
// Wait for completion or cancellation.
select {
case <-w.ready:
// Trace success but only for HTTP/1.
// HTTP/2 calls trace.GotConn itself.
if w.pc != nil && w.pc.alt == nil && trace != nil && trace.GotConn != nil {
trace.GotConn(httptrace.GotConnInfo{Conn: w.pc.conn, Reused: w.pc.isReused()})
}
// ...此處省略代碼...
return w.pc, w.err
case <-req.Cancel:
return nil, errRequestCanceledConn
case <-req.Context().Done():
return nil, req.Context().Err()
case err := <-cancelc:
if err == errRequestCanceled {
err = errRequestCanceledConn
}
return nil, err
}
}
由上能夠清楚的知道, 獲取連接分為以下幾個步驟:
調(diào)用
t.queueForIdleConn獲取一個空閑且可復用的連接,如果獲取成功則直接返回該連接。如果未獲取到空閑連接則調(diào)用
t.queueForDial開始新建一個連接。等待w.ready關(guān)閉,則可以返回新的連接。
(*Transport).queueForIdleConn
(*Transport).queueForIdleConn方法會根據(jù)請求的connectMethodKey從t.idleConn獲取一個[]*persistConn切片, 并從切片中,根據(jù)算法獲取一個有效的空閑連接。如果未獲取到空閑連接,則將wantConn結(jié)構(gòu)體變量放入t.idleConnWait[w.key]等待隊列,此處wantConn結(jié)構(gòu)體變量就是前面提到的w。
connectMethodKey定義和queueForIdleConn部分關(guān)鍵代碼如下:
type connectMethodKey struct {
proxy, scheme, addr string
onlyH1 bool
}
func (t *Transport) queueForIdleConn(w *wantConn) (delivered bool) {
// ...此處省略代碼...
// Look for most recently-used idle connection.
if list, ok := t.idleConn[w.key]; ok {
stop := false
delivered := false
for len(list) > 0 && !stop {
pconn := list[len(list)-1]
// See whether this connection has been idle too long, considering
// only the wall time (the Round(0)), in case this is a laptop or VM
// coming out of suspend with previously cached idle connections.
tooOld := !oldTime.IsZero() && pconn.idleAt.Round(0).Before(oldTime)
// ...此處省略代碼...
delivered = w.tryDeliver(pconn, nil)
if delivered {
// ...此處省略代碼...
}
stop = true
}
if len(list) > 0 {
t.idleConn[w.key] = list
} else {
delete(t.idleConn, w.key)
}
if stop {
return delivered
}
}
// Register to receive next connection that becomes idle.
if t.idleConnWait == nil {
t.idleConnWait = make(map[connectMethodKey]wantConnQueue)
}
q := t.idleConnWait[w.key]
q.cleanFront()
q.pushBack(w)
t.idleConnWait[w.key] = q
return false
}
其中w.tryDeliver方法主要作用是將連接協(xié)程安全的賦值給w.pc,并關(guān)閉w.ready管道。此時我們便可以和(*Transport).getConn中調(diào)用queueForIdleConn成功后的返回值對應上。
(*Transport).queueForDial
(*Transport).queueForDial方法包含三個步驟:
如果t.MaxConnsPerHost小于等于0,執(zhí)行
go t.dialConnFor(w)并返回。其中MaxConnsPerHost代表著每個host的最大連接數(shù),小于等于0表示不限制。如果當前host的連接數(shù)不超過t.MaxConnsPerHost,對當前host的連接數(shù)+1,然后執(zhí)行
go t.dialConnFor(w)并返回。如果當前host的連接數(shù)等于t.MaxConnsPerHost,則將
wantConn結(jié)構(gòu)體變量放入t.connsPerHostWait[w.key]等待隊列,此處wantConn結(jié)構(gòu)體變量就是前面提到的w。另外在放入等待隊列前會先清除隊列中已經(jīng)失效或者不再等待的變量。
func (t *Transport) queueForDial(w *wantConn) {
w.beforeDial()
if t.MaxConnsPerHost <= 0 {
go t.dialConnFor(w)
return
}
t.connsPerHostMu.Lock()
defer t.connsPerHostMu.Unlock()
if n := t.connsPerHost[w.key]; n < t.MaxConnsPerHost {
if t.connsPerHost == nil {
t.connsPerHost = make(map[connectMethodKey]int)
}
t.connsPerHost[w.key] = n + 1
go t.dialConnFor(w)
return
}
if t.connsPerHostWait == nil {
t.connsPerHostWait = make(map[connectMethodKey]wantConnQueue)
}
q := t.connsPerHostWait[w.key]
q.cleanFront()
q.pushBack(w)
t.connsPerHostWait[w.key] = q
}
(*Transport).dialConnFor
(*Transport).dialConnFor方法調(diào)用t.dialConn獲取一個真正的*persistConn。并將這個連接傳遞給w, 如果w已經(jīng)獲取到了連接,則會傳遞失敗,此時調(diào)用t.putOrCloseIdleConn將連接放回空閑連接池。
如果連接獲取錯誤則會調(diào)用t.decConnsPerHost減少當前host的連接數(shù)。
func (t *Transport) dialConnFor(w *wantConn) {
defer w.afterDial()
pc, err := t.dialConn(w.ctx, w.cm)
delivered := w.tryDeliver(pc, err)
if err == nil && (!delivered || pc.alt != nil) {
// pconn was not passed to w,
// or it is HTTP/2 and can be shared.
// Add to the idle connection pool.
t.putOrCloseIdleConn(pc)
}
if err != nil {
t.decConnsPerHost(w.key)
}
}
(*Transport).putOrCloseIdleConn方法
func (t *Transport) putOrCloseIdleConn(pconn *persistConn) {
if err := t.tryPutIdleConn(pconn); err != nil {
pconn.close(err)
}
}
func (t *Transport) tryPutIdleConn(pconn *persistConn) error {
if t.DisableKeepAlives || t.MaxIdleConnsPerHost < 0 {
return errKeepAlivesDisabled
}
// ...此處省略代碼...
t.idleMu.Lock()
defer t.idleMu.Unlock()
// ...此處省略代碼...
// Deliver pconn to goroutine waiting for idle connection, if any.
// (They may be actively dialing, but this conn is ready first.
// Chrome calls this socket late binding.
// See https://insouciant.org/tech/connection-management-in-chromium/.)
key := pconn.cacheKey
if q, ok := t.idleConnWait[key]; ok {
done := false
if pconn.alt == nil {
// HTTP/1.
// Loop over the waiting list until we find a w that isn't done already, and hand it pconn.
for q.len() > 0 {
w := q.popFront()
if w.tryDeliver(pconn, nil) {
done = true
break
}
}
} else {
// HTTP/2.
// Can hand the same pconn to everyone in the waiting list,
// and we still won't be done: we want to put it in the idle
// list unconditionally, for any future clients too.
for q.len() > 0 {
w := q.popFront()
w.tryDeliver(pconn, nil)
}
}
if q.len() == 0 {
delete(t.idleConnWait, key)
} else {
t.idleConnWait[key] = q
}
if done {
return nil
}
}
if t.closeIdle {
return errCloseIdle
}
if t.idleConn == nil {
t.idleConn = make(map[connectMethodKey][]*persistConn)
}
idles := t.idleConn[key]
if len(idles) >= t.maxIdleConnsPerHost() {
return errTooManyIdleHost
}
// ...此處省略代碼...
t.idleConn[key] = append(idles, pconn)
t.idleLRU.add(pconn)
// ...此處省略代碼...
// Set idle timer, but only for HTTP/1 (pconn.alt == nil).
// The HTTP/2 implementation manages the idle timer itself
// (see idleConnTimeout in h2_bundle.go).
if t.IdleConnTimeout > 0 && pconn.alt == nil {
if pconn.idleTimer != nil {
pconn.idleTimer.Reset(t.IdleConnTimeout)
} else {
pconn.idleTimer = time.AfterFunc(t.IdleConnTimeout, pconn.closeConnIfStillIdle)
}
}
pconn.idleAt = time.Now()
return nil
}
func (t *Transport) maxIdleConnsPerHost() int {
if v := t.MaxIdleConnsPerHost; v != 0 {
return v
}
return DefaultMaxIdleConnsPerHost // 2
}
由上可知,將連接放入t.idleConn前,先檢查t.idleConnWait的數(shù)量。如果有請求在等待空閑連接, 則將連接復用,沒有空閑連接時,才將連接放入t.idleConn。連接放入t.idleConn后,還會重置連接的可空閑時間。
另外在t.putOrCloseIdleConn函數(shù)中還需要注意兩點:
如果用戶自定義了http.client,且將DisableKeepAlives設置為true,或者將MaxIdleConnsPerHost設置為負數(shù),則連接不會放入t.idleConn即連接不能復用。
在判斷已有空閑連接數(shù)量時, 如果MaxIdleConnsPerHost 不等于0, 則返回用戶設置的數(shù)量,否則返回默認值2,詳見上面的
(*Transport).maxIdleConnsPerHost?函數(shù)。
綜上, 我們知道對于部分有連接數(shù)限制的業(yè)務, 我們可以為http.Client自定義一個Transport, 并設置Transport的MaxConnsPerHost,MaxIdleConnsPerHost,IdleConnTimeout和DisableKeepAlives從而達到即限制連接數(shù)量,又能保證一定的并發(fā)。
(*Transport).decConnsPerHost方法
func (t *Transport) decConnsPerHost(key connectMethodKey) {
// ...此處省略代碼...
t.connsPerHostMu.Lock()
defer t.connsPerHostMu.Unlock()
n := t.connsPerHost[key]
// ...此處省略代碼...
// Can we hand this count to a goroutine still waiting to dial?
// (Some goroutines on the wait list may have timed out or
// gotten a connection another way. If they're all gone,
// we don't want to kick off any spurious dial operations.)
if q := t.connsPerHostWait[key]; q.len() > 0 {
done := false
for q.len() > 0 {
w := q.popFront()
if w.waiting() {
go t.dialConnFor(w)
done = true
break
}
}
if q.len() == 0 {
delete(t.connsPerHostWait, key)
} else {
// q is a value (like a slice), so we have to store
// the updated q back into the map.
t.connsPerHostWait[key] = q
}
if done {
return
}
}
// Otherwise, decrement the recorded count.
if n--; n == 0 {
delete(t.connsPerHost, key)
} else {
t.connsPerHost[key] = n
}
}
由上可知, decConnsPerHost方法主要干了兩件事:
判斷是否有請求在等待撥號, 如果有則執(zhí)行
go t.dialConnFor(w)。如果沒有請求在等待撥號, 則減少當前host的連接數(shù)量。
(*Transport).dialConn
根據(jù)http.Client的默認配置和實際的debug結(jié)果,(*Transport).dialConn方法主要邏輯如下:
調(diào)用
t.dial(ctx, "tcp", cm.addr())創(chuàng)建TCP連接。如果是https的請求, 則對請求建立安全的tls傳輸通道。
為persistConn創(chuàng)建讀寫buffer, 如果用戶沒有自定義讀寫buffer的大小, 根據(jù)writeBufferSize和readBufferSize方法可知, 讀寫bufffer的大小默認為4096。
執(zhí)行
go pconn.readLoop()和go pconn.writeLoop()開啟讀寫循環(huán)然后返回連接。
func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) {
pconn = &persistConn{
t: t,
cacheKey: cm.key(),
reqch: make(chan requestAndChan, 1),
writech: make(chan writeRequest, 1),
closech: make(chan struct{}),
writeErrCh: make(chan error, 1),
writeLoopDone: make(chan struct{}),
}
// ...此處省略代碼...
if cm.scheme() == "https" && t.hasCustomTLSDialer() {
// ...此處省略代碼...
} else {
conn, err := t.dial(ctx, "tcp", cm.addr())
if err != nil {
return nil, wrapErr(err)
}
pconn.conn = conn
if cm.scheme() == "https" {
var firstTLSHost string
if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil {
return nil, wrapErr(err)
}
if err = pconn.addTLS(firstTLSHost, trace); err != nil {
return nil, wrapErr(err)
}
}
}
// Proxy setup.
switch { // ...此處省略代碼... }
if cm.proxyURL != nil && cm.targetScheme == "https" {
// ...此處省略代碼...
}
if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
// ...此處省略代碼...
}
pconn.br = bufio.NewReaderSize(pconn, t.readBufferSize())
pconn.bw = bufio.NewWriterSize(persistConnWriter{pconn}, t.writeBufferSize())
go pconn.readLoop()
go pconn.writeLoop()
return pconn, nil
}
func (t *Transport) writeBufferSize() int {
if t.WriteBufferSize > 0 {
return t.WriteBufferSize
}
return 4 << 10
}
func (t *Transport) readBufferSize() int {
if t.ReadBufferSize > 0 {
return t.ReadBufferSize
}
return 4 << 10
}
(*persistConn).roundTrip
(*persistConn).roundTrip方法是http1.1請求的核心之一,該方法在這里獲取真實的Response并返回給上層。
func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) {
// ...此處省略代碼...
gone := make(chan struct{})
defer close(gone)
// ...此處省略代碼...
const debugRoundTrip = false
// Write the request concurrently with waiting for a response,
// in case the server decides to reply before reading our full
// request body.
startBytesWritten := pc.nwrite
writeErrCh := make(chan error, 1)
pc.writech <- writeRequest{req, writeErrCh, continueCh}
resc := make(chan responseAndError)
pc.reqch <- requestAndChan{
req: req.Request,
ch: resc,
addedGzip: requestedGzip,
continueCh: continueCh,
callerGone: gone,
}
var respHeaderTimer <-chan time.Time
cancelChan := req.Request.Cancel
ctxDoneChan := req.Context().Done()
for {
testHookWaitResLoop()
select {
case err := <-writeErrCh:
// ...此處省略代碼...
if err != nil {
pc.close(fmt.Errorf("write error: %v", err))
return nil, pc.mapRoundTripError(req, startBytesWritten, err)
}
// ...此處省略代碼...
case <-pc.closech:
// ...此處省略代碼...
return nil, pc.mapRoundTripError(req, startBytesWritten, pc.closed)
case <-respHeaderTimer:
// ...此處省略代碼...
return nil, errTimeout
case re := <-resc:
if (re.res == nil) == (re.err == nil) {
panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil))
}
if debugRoundTrip {
req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err)
}
if re.err != nil {
return nil, pc.mapRoundTripError(req, startBytesWritten, re.err)
}
return re.res, nil
case <-cancelChan:
pc.t.CancelRequest(req.Request)
cancelChan = nil
case <-ctxDoneChan:
pc.t.cancelRequest(req.Request, req.Context().Err())
cancelChan = nil
ctxDoneChan = nil
}
}
}
由上可知, (*persistConn).roundTrip方法可以分為三步:
向連接的writech寫入
writeRequest:?pc.writech <- writeRequest{req, writeErrCh, continueCh}, 參考(*Transport).dialConn可知pc.writech是一個緩沖大小為1的管道,所以會立馬寫入成功。向連接的reqch寫入
requestAndChan:?pc.reqch <- requestAndChan, pc.reqch和pc.writech一樣都是緩沖大小為1的管道。其中requestAndChan.ch是一個無緩沖的responseAndError管道,(*persistConn).roundTrip就通過這個管道讀取到真實的響應。開啟for循環(huán)select, 等待響應或者超時等信息。
(*persistConn).writeLoop 寫循環(huán)
(*persistConn).writeLoop方法主體邏輯相對簡單,把用戶的請求寫入連接的寫緩存buffer, 最后再flush就可以了。
func (pc *persistConn) writeLoop() {
defer close(pc.writeLoopDone)
for {
select {
case wr := <-pc.writech:
startBytesWritten := pc.nwrite
err := wr.req.Request.write(pc.bw, pc.isProxy, wr.req.extra, pc.waitForContinue(wr.continueCh))
if bre, ok := err.(requestBodyReadError); ok {
err = bre.error
wr.req.setError(err)
}
if err == nil {
err = pc.bw.Flush()
}
if err != nil {
wr.req.Request.closeBody()
if pc.nwrite == startBytesWritten {
err = nothingWrittenError{err}
}
}
pc.writeErrCh <- err // to the body reader, which might recycle us
wr.ch <- err // to the roundTrip function
if err != nil {
pc.close(err)
return
}
case <-pc.closech:
return
}
}
}
(*persistConn).readLoop 讀循環(huán)
(*persistConn).readLoop有較多的細節(jié), 我們先看代碼, 然后再逐步分析。
func (pc *persistConn) readLoop() {
closeErr := errReadLoopExiting // default value, if not changed below
defer func() {
pc.close(closeErr)
pc.t.removeIdleConn(pc)
}()
tryPutIdleConn := func(trace *httptrace.ClientTrace) bool {
if err := pc.t.tryPutIdleConn(pc); err != nil {
// ...此處省略代碼...
}
// ...此處省略代碼...
return true
}
// ...此處省略代碼...
alive := true
for alive {
// ...此處省略代碼...
rc := <-pc.reqch
trace := httptrace.ContextClientTrace(rc.req.Context())
var resp *Response
if err == nil {
resp, err = pc.readResponse(rc, trace)
} else {
err = transportReadFromServerError{err}
closeErr = err
}
// ...此處省略代碼...
bodyWritable := resp.bodyIsWritable()
hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0
if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable {
// Don't do keep-alive on error if either party requested a close
// or we get an unexpected informational (1xx) response.
// StatusCode 100 is already handled above.
alive = false
}
if !hasBody || bodyWritable {
// ...此處省略代碼...
continue
}
waitForBodyRead := make(chan bool, 2)
body := &bodyEOFSignal{
body: resp.Body,
earlyCloseFn: func() error {
waitForBodyRead <- false
<-eofc // will be closed by deferred call at the end of the function
return nil
},
fn: func(err error) error {
isEOF := err == io.EOF
waitForBodyRead <- isEOF
if isEOF {
<-eofc // see comment above eofc declaration
} else if err != nil {
if cerr := pc.canceled(); cerr != nil {
return cerr
}
}
return err
},
}
resp.Body = body
// ...此處省略代碼...
select {
case rc.ch <- responseAndError{res: resp}:
case <-rc.callerGone:
return
}
// Before looping back to the top of this function and peeking on
// the bufio.Reader, wait for the caller goroutine to finish
// reading the response body. (or for cancellation or death)
select {
case bodyEOF := <-waitForBodyRead:
pc.t.setReqCanceler(rc.req, nil) // before pc might return to idle pool
alive = alive &&
bodyEOF &&
!pc.sawEOF &&
pc.wroteRequest() &&
tryPutIdleConn(trace)
if bodyEOF {
eofc <- struct{}{}
}
case <-rc.req.Cancel:
alive = false
pc.t.CancelRequest(rc.req)
case <-rc.req.Context().Done():
alive = false
pc.t.cancelRequest(rc.req, rc.req.Context().Err())
case <-pc.closech:
alive = false
}
testHookReadLoopBeforeNextRead()
}
}
由上可知, 只要連接處于活躍狀態(tài), 則這個讀循環(huán)會一直開啟, 直到 連接不活躍或者產(chǎn)生其他錯誤才會結(jié)束讀循環(huán)。
在上述源碼中,pc.readResponse(rc,trace)會從連接的讀buffer中獲取一個請求對應的Response。
讀到響應之后判斷請求是否是HEAD請求或者響應內(nèi)容為空,如果是HEAD請求或者響應內(nèi)容為空則將響應寫入rc.ch,并將連接放入idleConn(此處因為篇幅的原因省略了源碼內(nèi)容, 正常請求的邏輯也有寫響應和將連接放入idleConn兩個步驟)。
如果不是HEAD請求并且響應內(nèi)容不為空即!hasBody || bodyWritable為false:
創(chuàng)建一個緩沖大小為2的等待響應被讀取的管道
waitForBodyRead:?waitForBodyRead := make(chan bool, 2)將響應的Body修改為
bodyEOFSignal結(jié)構(gòu)體。通過上面的源碼我們可以知道,此時的resp.Body中有earlyCloseFn和fn兩個函數(shù)。earlyCloseFn函數(shù)會向waitForBodyRead管道寫入false, fn函數(shù)會判斷響應是否讀完, 如果已經(jīng)讀完則向waitForBodyRead寫入true否則寫入false。將修改后的響應寫入
rc.ch。其中rc.ch從rc := <-pc.reqch獲取,而pc.reqch正是前面(*persistConn).roundTrip函數(shù)寫入的requestAndChan。requestAndChan.ch是一個無緩沖的responseAndError管道,(*persistConn).roundTrip通過這個管道讀取到真實的響應。select 讀取 waitForBodyRead被寫入的值。如果讀到到的是true則可以調(diào)用tryPutIdleConn(此方法會調(diào)用前面提到的(*Transport).tryPutIdleConn方法)將連接放入idleConn從而復用連接。
waitForBodyRead寫入true的原因我們已經(jīng)知道了,但是被寫入true的時機我們尚不明確。
func (es *bodyEOFSignal) Read(p []byte) (n int, err error) {
// ...此處省略代碼...
n, err = es.body.Read(p)
if err != nil {
es.mu.Lock()
defer es.mu.Unlock()
if es.rerr == nil {
es.rerr = err
}
err = es.condfn(err)
}
return
}
func (es *bodyEOFSignal) Close() error {
es.mu.Lock()
defer es.mu.Unlock()
if es.closed {
return nil
}
es.closed = true
if es.earlyCloseFn != nil && es.rerr != io.EOF {
return es.earlyCloseFn()
}
err := es.body.Close()
return es.condfn(err)
}
// caller must hold es.mu.
func (es *bodyEOFSignal) condfn(err error) error {
if es.fn == nil {
return err
}
err = es.fn(err)
es.fn = nil
return err
}
由上述源碼可知, 只有當調(diào)用方完整的讀取了響應,該連接才能夠被復用。因此在http1.1中,一個連接上的請求,只有等前一個請求處理完之后才能繼續(xù)下一個請求。如果前面的請求處理較慢, 則后面的請求必須等待, 這就是http1.1中的線頭阻塞。
根據(jù)上面的邏輯, 我們GoPher在平時的開發(fā)中如果遇到了不關(guān)心響應的請求, 也一定要記得把響應body讀完以保證連接的復用性。筆者在這里給出一個demo:
io.CopyN(ioutil.Discard, resp.Body, 2 << 10)
resp.Body.Close()
以上,就是筆者整理的HTTP1.1的請求流程。
注意
筆者本著嚴謹?shù)膽B(tài)度, 特此提醒:
上述流程中筆者對很多細節(jié)并未詳細提及或者僅一筆帶過,希望讀者酌情參考。
總結(jié)
在go中發(fā)起http1.1的請求時, 如果遇到不關(guān)心響應的請求,請務必完整讀取響應內(nèi)容以保證連接的復用性。
如果遇到對連接數(shù)有限制的業(yè)務,可以通過自定義http.Client的Transport, 并設置Transport的
MaxConnsPerHost,MaxIdleConnsPerHost,IdleConnTimeout和DisableKeepAlives的值,來控制連接數(shù)。如果對于重定向業(yè)務邏輯有需求,可以自定義http.Client的
CheckRedirect。在http1.1,中一個連接上的請求,只有等前一個請求處理完之后才能繼續(xù)下一個請求。如果前面的請求處理較慢, 則后面的請求必須等待, 這就是http1.1中的線頭阻塞。
注: 寫本文時, 筆者所用go版本為: go1.14.2
推薦閱讀
站長 polarisxu
自己的原創(chuàng)文章
不限于 Go 技術(shù)
職場和創(chuàng)業(yè)經(jīng)驗
Go語言中文網(wǎng)
每天為你
分享 Go 知識
Go愛好者值得關(guān)注
