【學(xué)術(shù)相關(guān)】AAAI2021推薦系統(tǒng)論文清單
深度學(xué)習(xí)技術(shù)依然是目前來看比較火熱的技術(shù)之一;
圖結(jié)構(gòu)數(shù)據(jù)(網(wǎng)絡(luò)/知識圖譜)依然是大家比較關(guān)注的數(shù)據(jù)形式之一;
強化學(xué)習(xí)/對抗學(xué)習(xí)/多任務(wù)學(xué)習(xí)范式是大家主要使用的手段之一;
動態(tài)性/高效性/魯棒性/無監(jiān)督學(xué)習(xí)是目前大家比較關(guān)注的話題;
相較于去年的熱度分布來看,Embedding技術(shù)/Attention技術(shù)相對來說熱度有所下降。更多去年AAAI2020相關(guān)的信息可以移步AAAI2020推薦系統(tǒng)論文集錦。

AAAI2021接收論文標題詞云
接下來,特意從1692篇論文中篩選出與推薦系統(tǒng)相關(guān)的33篇文章供大家欣賞(去年的推薦系統(tǒng)論文文章的比例為27/1590),提前領(lǐng)略學(xué)術(shù)前沿趨勢與牛人的最新想法。
推薦系統(tǒng)相關(guān)文章
RevMan:?Revenue-Aware?Multi-Task?Online?Insurance?Recommendation 收入感知的多任務(wù)在線保險推薦(很對,賣保險還真得看收入) |
Detecting?Beneficial?Feature?Interactions?for?Recommender?Systems 為推薦系統(tǒng)檢測有益的特征(有用的交叉特征對于推薦來說非常重要) |
FedRec++:?Lossless?Federated?Recommendation?with?Explicit?Feedback 帶有顯式反饋的無損聯(lián)邦推薦系統(tǒng)(好奇聯(lián)邦學(xué)習(xí)范式如何做到無損的) |
Graph?Heterogeneous?Multi-Relational?Recommendation 圖異構(gòu)多關(guān)系推薦系統(tǒng)(多種關(guān)系的異構(gòu)圖數(shù)據(jù)處理并不容易) |
Hierarchical?Reinforcement?Learning?for?Integrated?Recommendation 層次化的強化學(xué)習(xí)綜合推薦系統(tǒng) |
Who?You?Would?Like?to?Share?With??A?Study?of?Share?Recommendation?in?Social?ECommerce 社交電商中分享行為的研究(好奇是什么因素影響我們分享的) |
Self-Supervised Hypergraph?Convolutional?Networks?for?Session-Based?Recommendation 用于會話推薦的自監(jiān)督超圖卷積網(wǎng)絡(luò)(超圖能夠建模更復(fù)雜的圖關(guān)系) |
Dual?Sparse?Attention?Network?for?Session-Based?Recommendation 用于會話推薦的雙稀疏注意力網(wǎng)絡(luò) |
U-BERT:?Pre-Training?User?Representations?for?Improved?Recommendation 預(yù)訓(xùn)練BERT模型用于用戶表示來提高推薦性能 |
Fairness-Aware?News?Recommendation?with?Decomposed?Adversarial?Learning 分解的對抗學(xué)習(xí)用于公平性的新聞推薦 |
Knowledge-Enhanced Hierarchical?Graph?Transformer?Network?for?Multi-Behavior?Recommendation 知識增強的層級圖Transformer網(wǎng)絡(luò)用于多行為推薦 |
Cold-Start Sequential Recommendation via Meta Learner 基于元學(xué)習(xí)器的冷啟動序列化推薦 |
A User-Adaptive?Layer?Selection?Framework?for?Very?Deep?Sequential?Recommender?Models 用戶自適應(yīng)層篩選框架用于極深度序列化推薦模型 |
A?Hybrid?Bandit?Framework?for?Diversified?Recommendation 一個混合的Bandit框架用于多樣化推薦 |
PREMERE: Meta-Reweighting?via?Self-Ensembling?for?Point-of-Interest?Recommendation 通過自集成來進行元權(quán)重重調(diào)用于POI推薦 |
DEAR:?Deep?Reinforcement?Learning?for?Online?Advertising?Impression?in?Recommender?Systems 深度強化學(xué)習(xí)用于推薦系統(tǒng)中的在線廣告印象中(Impression是在線廣告中的專有詞,大家可以具體查查) |
Noninvasive Self-Attention?for?Side?Information?Fusion?in?Sequential?Recommendation 無創(chuàng)自注意力機制用于序列推薦中的附加信息融合 |
Knowledge-Enhanced?Top-K?Recommendation?in?Poincaré?Ball 知識增強的Top-K推薦(Poincaré?Ball是個什么Ball,不太懂) |
Out-of-Town?Recommendation?with?Travel?Intention?Modeling 帶有旅游意圖建模的POI推薦 |
Learning?to?Recommend?from?Sparse?Data?via?Generative?User?Feedback 通過生成式用戶反饋來學(xué)習(xí)從稀疏數(shù)據(jù)進行推薦 |
Hierarchical?Negative?Binomial?Factorization?for?Recommender?Systems?on?Implicit?Feedback 基于隱式反饋的遞階負二項式分解用于推薦系統(tǒng) |
Disposable?Linear?Bandits?for?Online?Recommendations 一次性線性Bandits用于在線推薦 |
Reinforcement?Learning?with?a?Disentangled?Universal?Value?Function?for?Item?Recommendation 帶有解糾纏的普遍價值函數(shù)的強化學(xué)習(xí)用于項目推薦 |
Dynamic?Memory?Based?Attention?Network?for?Sequential?Recommendation 動態(tài)記憶注意力網(wǎng)絡(luò)用于序列化推薦 |
Asynchronous Stochastic?Gradient?Descent?for?Extreme-Scale?Recommender?Systems 異步隨機梯度下降算法在極端尺度推薦系統(tǒng)中的應(yīng)用 |
On?Estimating?Recommendation?Evaluation?Metrics?under?Sampling 關(guān)于采樣情況下的推薦評價指標的估計 |
Knowledge-Aware?Coupled?Graph?Neural?Network?for?Social?Recommendation 面向社交推薦的知識感知耦合圖神經(jīng)網(wǎng)絡(luò) |
Graph-Enhanced Multi-Task?Learning?of?Multi-Level?Transition?Dynamics?for?Session-Based?Recommendation 多層次動態(tài)過渡的圖增強多任務(wù)學(xué)習(xí)用于會話推薦 |
Deep?Transfer?Tensor?Decomposition?with?Orthogonal?Constraint?for?Recommender?Systems 基于正交約束的深度遷移張量分解算法 |
A?General?Offline?Reinforcement?Learning?Framework?for?Interactive?Recommendation 一個用于交互式推薦的通用離線強化學(xué)習(xí)框架 |
Intelligent?Recommendations?for?Citizen?Science 公民科學(xué)的智能推薦(公民科學(xué)指的是在科學(xué)家指導(dǎo)下的公民參與的眾包平臺項目) |
Degree Planning?with?PLAN-BERT:?Multi-Semester?Recommendation?Using?Future?Courses?of?Interest 使用未來感興趣的課程進行多學(xué)期推薦 |
Personalized?Adaptive?Meta?Learning?for?Cold-Start?User?Preference?Prediction 基于個性化自適應(yīng)元學(xué)習(xí)的冷啟動用戶偏好預(yù)測 |
最后貼上之前總結(jié)的頂會中推薦系統(tǒng)相關(guān)的論文供大家進行橫向和縱向?qū)Ρ葘W(xué)習(xí)。
往期精彩回顧
獲取本站知識星球優(yōu)惠券,復(fù)制鏈接直接打開:
https://t.zsxq.com/qFiUFMV
本站qq群704220115。
加入微信群請掃碼:
