圖像分類:13個(gè)Kaggle項(xiàng)目的經(jīng)驗(yàn)總結(jié)
來(lái)源:數(shù)據(jù)派THU

Intel Image Classification:https://www.kaggle.com/puneet6060/intel-image-classification Recursion Cellular Image Classification:https://www.kaggle.com/c/recursion-cellular-image-classification SIIM-ISIC Melanoma Classification:https://www.kaggle.com/c/siim-isic-melanoma-classification APTOS 2019 Blindness Detection:https://www.kaggle.com/c/aptos2019-blindness-detection/notebooks Diabetic Retinopathy Detection:https://www.kaggle.com/c/diabetic-retinopathy-detection ML Project?—?Image Classification:https://www.kaggle.com/c/image-classification-fashion-mnist/notebooks Cdiscount’s Image Classification Challenge:https://www.kaggle.com/c/cdiscount-image-classification-challenge/notebooks Plant seedlings classifications:https://www.kaggle.com/c/plant-seedlings-classification/notebooks Aesthetic Visual Analysis:https://www.kaggle.com/c/aesthetic-visual-analysis/notebooks
數(shù)據(jù) 模型 損失函數(shù)
數(shù)據(jù)
圖像預(yù)處理 + EDA

Visualisation:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline#Building-a-baseline-model- Dealing with Class imbalance:https://www.kaggle.com/rohandeysarkar/ultimate-image-classification-guide-2020 Fill missing values (labels, features and, etc.):https://www.kaggle.com/datafan07/analysis-of-melanoma-metadata-and-effnet-ensemble Normalisation?:https://www.kaggle.com/vincee/intel-image-classification-cnn-keras Pre-processing:https://www.kaggle.com/ratthachat/aptos-eye-preprocessing-in-diabetic-retinopathy#3.A-Important-Update-on-Color-Version-of-Cropping-&-Ben's-Preprocessing
數(shù)據(jù)增強(qiáng)

Horizontal Flip:https://www.kaggle.com/datafan07/analysis-of-melanoma-metadata-and-effnet-ensemble Random Rotate and Random Dihedral:https://www.kaggle.com/iafoss/pretrained-resnet34-with-rgby-0-460-public-lb Hue, Saturation, Contrast, Brightness, Crop:https://www.kaggle.com/cdeotte/triple-stratified-kfold-with-tfrecords Colour jitter:https://www.kaggle.com/nroman/melanoma-pytorch-starter-efficientnet
模型

開(kāi)發(fā)一個(gè)基線
開(kāi)發(fā)一個(gè)足夠大可以過(guò)擬合的模型
添加更多層 使用更好的結(jié)構(gòu) 更完善的訓(xùn)練流程
結(jié)構(gòu)
Residual Networks Wide Residual Networks Inception EfficientNet Swish activation Residual Attention Network
訓(xùn)練過(guò)程
Mixed-Precision Training Large Batch-Size Training Cross-Validation Set Weight Initialization Self-Supervised Training (Knowledge Distillation) Learning Rate Scheduler Learning Rate Warmup Early Stopping Differential Learning Rates Ensemble Transfer Learning Fine-Tuning
超參數(shù)調(diào)試

正則化
Adding Dropout:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline Adding or changing the position of Batch Norm:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline Data augmentation:https://www.kaggle.com/cdeotte/triple-stratified-kfold-with-tfrecords Mixup:https://arxiv.org/abs/1710.09412 Weight regularization:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline Gradient clipping:https://www.kaggle.com/allunia/protein-atlas-exploration-and-baseline
損失函數(shù)

Label smoothing Focal loss SparseMax loss and Weighted cross-entropy BCE loss, BCE with logits loss and Categorical cross-entropy loss Additive Angular Margin Loss for Deep Face Recognition
評(píng)估 + 錯(cuò)誤分析

Tracking metrics and Confusion matrix:https://www.kaggle.com/vincee/intel-image-classification-cnn-keras Grad CAM:https://arxiv.org/pdf/1610.02391v1.pdf Test Time Augmentation (TTA):https://www.kaggle.com/iafoss/pretrained-resnet34-with-rgby-0-460-public-lb
最后

加入知識(shí)星球【我們談?wù)摂?shù)據(jù)科學(xué)】
300+小伙伴一起學(xué)習(xí)!
· 推薦閱讀?·
Python+Dash快速web應(yīng)用開(kāi)發(fā):回調(diào)交互篇(上)
Python+Dash快速web應(yīng)用開(kāi)發(fā):回調(diào)交互篇(中)
評(píng)論
圖片
表情
