<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          使用OpenCV實(shí)現(xiàn)攝像頭測(cè)距

          共 4683字,需瀏覽 10分鐘

           ·

          2021-06-13 14:09


          點(diǎn)擊上方小白學(xué)視覺(jué)”,選擇加"星標(biāo)"或“置頂

          重磅干貨,第一時(shí)間送達(dá)

          本文轉(zhuǎn)自:視學(xué)算法

          攝像頭測(cè)距就是計(jì)算照片中的目標(biāo)物體到相機(jī)的距離??梢允褂孟嗨迫切危╰riangle similarity)方法實(shí)現(xiàn),或者使用更復(fù)雜但更準(zhǔn)確的相機(jī)模型的內(nèi)參來(lái)實(shí)現(xiàn)這個(gè)功能。

          使用相似三角形計(jì)算物體到相機(jī)的距離


          假設(shè)物體的寬度為 W,將其放到離相機(jī)距離為 D 的位置,然后對(duì)物體進(jìn)行拍照。在照片上量出物體的像素寬度 P,于是可以得出計(jì)算相機(jī)焦距 F 的公式:

          比如我在相機(jī)前 24 英寸距離(D=24 inches)的位置橫著放了一張 8.5 x 11 英寸(W=11 inches)的紙,拍照后通過(guò)圖像處理得出照片上紙的像素寬度 P=248 pixels。所以焦距 F 等于:

          此時(shí)移動(dòng)相機(jī)離物體更近或者更遠(yuǎn),我們可以應(yīng)用相似三角形得到計(jì)算物體到相機(jī)的距離的公式:

          原理大概就是這樣,接下來(lái)使用 OpenCV 來(lái)實(shí)現(xiàn)。

          獲取目標(biāo)輪廓
          # import the necessary packagesfrom imutils import pathsimport numpy as npimport imutilsimport cv2 def find_marker(image):    # convert the image to grayscale, blur it, and detect edges    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)    gray = cv2.GaussianBlur(gray, (5, 5), 0)    edged = cv2.Canny(gray, 35, 125)     # find the contours in the edged image and keep the largest one;    # we'll assume that this is our piece of paper in the image    cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)    cnts = imutils.grab_contours(cnts)    c = max(cnts, key = cv2.contourArea)     # compute the bounding box of the of the paper region and return it    return cv2.minAreaRect(c)

          定義一個(gè) find_marker 函數(shù),接收一個(gè)參數(shù) iamge,用來(lái)找到要計(jì)算距離的物體。這里我們用一張 8.5 x 11 英寸的紙作為目標(biāo)物體。第一個(gè)任務(wù)是在圖片中找到目標(biāo)物體。

          下面這三行是先將圖片轉(zhuǎn)換為灰度圖,并進(jìn)行輕微模糊處理以去除高頻噪聲,然后進(jìn)行邊緣檢測(cè)。

          gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 35, 125)

          做了這幾步后圖片看起來(lái)是這樣的:

          現(xiàn)在已經(jīng)可以清晰地看到這張紙的邊緣,接下來(lái)需要做的是找出這張紙的輪廓。

          cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)cnts = imutils.grab_contours(cnts)c = max(cnts, key = cv2.contourArea)

          用 cv2.findContours 函數(shù)找到圖片中的眾多輪廓,然后獲取其中面積最大的輪廓,并假設(shè)這是目標(biāo)物體的輪廓。

          這種假設(shè)只適用于我們這個(gè)場(chǎng)景,在實(shí)際使用時(shí),在圖片中找出目標(biāo)物體的方法與應(yīng)用場(chǎng)景有很大關(guān)系。

          我們這個(gè)場(chǎng)景用簡(jiǎn)單的邊緣檢測(cè)并找出最大的輪廓就可以了。當(dāng)然為了使程序更具有魯棒性,也可以用輪廓近似,并剔除不是四個(gè)點(diǎn)的輪廓(紙張是一個(gè)有四個(gè)點(diǎn)的矩形),然后再找出面積最大,具有四個(gè)點(diǎn)的輪廓。

          注意: 關(guān)于這個(gè)方法,詳情可以查看這篇文章,用于構(gòu)建一個(gè)移動(dòng)文本掃描工具。

          我們也可以根據(jù)顏色特征在圖片中找到目標(biāo)物體,因?yàn)槟繕?biāo)物體和背景的顏色有著很明顯的不同。還可以應(yīng)用關(guān)鍵點(diǎn)檢測(cè)(keypoint detection),局部不變性描述子(local invariant descriptors)和關(guān)鍵點(diǎn)匹配(keypoint matching)來(lái)尋找目標(biāo)。但是這些方法不在本文的討論范圍內(nèi),而且高度依賴具體場(chǎng)景。

          我們現(xiàn)在得到目標(biāo)物體的輪廓了,find_marker 函數(shù)最后返回的是包含輪廓 (x, y) 坐標(biāo)、像素長(zhǎng)度和像素寬度的邊框,

          計(jì)算距離


          接下來(lái)該使用相似三角形計(jì)算目標(biāo)到相機(jī)的距離。

          def distance_to_camera(knownWidth, focalLength, perWidth):    # compute and return the distance from the maker to the camera    return (knownWidth * focalLength) / perWidth

          distance_to_camera 函數(shù)傳入目標(biāo)的實(shí)際寬度,計(jì)算得到的焦距和圖片上目標(biāo)的像素寬度,就可以通過(guò)相似三角形公式計(jì)算目標(biāo)到相機(jī)的距離了。

          下面是調(diào)用 distance_to_camera 函數(shù)之前的準(zhǔn)備:

          # initialize the known distance from the camera to the object, which# in this case is 24 inchesKNOWN_DISTANCE = 24.0 # initialize the known object width, which in this case, the piece of# paper is 12 inches wideKNOWN_WIDTH = 11.0 # load the furst image that contains an object that is KNOWN TO BE 2 feet# from our camera, then find the paper marker in the image, and initialize# the focal lengthimage = cv2.imread("images/2ft.jpg")marker = find_marker(image)focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH

          首先是測(cè)量目標(biāo)物體的寬度,和目標(biāo)物體到相機(jī)的距離,并根據(jù)上面介紹的方法計(jì)算相機(jī)的焦距。其實(shí)這些并不是真正的攝像機(jī)標(biāo)定。真正的攝像機(jī)標(biāo)定包括攝像機(jī)的內(nèi)參,相關(guān)知識(shí)可以可以查看這里。

          使用 cv2.imread 函數(shù)從磁盤加載圖片,然后通過(guò) find_marker 函數(shù)得到圖片中目標(biāo)物體的坐標(biāo)和長(zhǎng)寬信息,最后根據(jù)相似三角形計(jì)算出相機(jī)的焦距。

          現(xiàn)在有了相機(jī)的焦距,就可以計(jì)算目標(biāo)物體到相機(jī)的距離了。

          # loop over the imagesfor imagePath in sorted(paths.list_images("images")):    # load the image, find the marker in the image, then compute the    # distance to the marker from the camera    image = cv2.imread(imagePath)    marker = find_marker(image)    inches = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])     # draw a bounding box around the image and display it    box = cv2.cv.BoxPoints(marker) if imutils.is_cv2() else cv2.boxPoints(marker)    box = np.int0(box)    cv2.drawContours(image, [box], -1, (0, 255, 0), 2)    cv2.putText(image, "%.2fft" % (inches / 12),        (image.shape[1] - 200, image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,        2.0, (0, 255, 0), 3)    cv2.imshow("image", image)    cv2.waitKey(0)

          使用 for 循環(huán)遍歷每個(gè)圖片,計(jì)算每張圖片中目標(biāo)對(duì)象到相機(jī)的距離。在結(jié)果中,我們根據(jù)得到的輪廓信息將方框畫了出來(lái),并顯示出了距離。下面是得到的幾個(gè)結(jié)果圖:


          總結(jié)


          通過(guò)這篇文章,我們學(xué)會(huì)了使用相似三角形計(jì)算圖片中一個(gè)已知物體到相機(jī)的距離。

          需要先測(cè)量出目標(biāo)物體的實(shí)際寬度和目標(biāo)物體到相機(jī)的距離,然后使用圖像處理的方法自動(dòng)計(jì)算圖片中目標(biāo)物體的像素寬度,并使用相似三角形計(jì)算出相機(jī)的焦距。

          根據(jù)相機(jī)的焦距就可以計(jì)算圖片中的目標(biāo)物體到相機(jī)的距離。

          下載1:OpenCV-Contrib擴(kuò)展模塊中文版教程
          在「小白學(xué)視覺(jué)」公眾號(hào)后臺(tái)回復(fù):擴(kuò)展模塊中文教程,即可下載全網(wǎng)第一份OpenCV擴(kuò)展模塊教程中文版,涵蓋擴(kuò)展模塊安裝、SFM算法、立體視覺(jué)、目標(biāo)跟蹤、生物視覺(jué)、超分辨率處理等二十多章內(nèi)容。

          下載2:Python視覺(jué)實(shí)戰(zhàn)項(xiàng)目52講
          小白學(xué)視覺(jué)公眾號(hào)后臺(tái)回復(fù):Python視覺(jué)實(shí)戰(zhàn)項(xiàng)目,即可下載包括圖像分割、口罩檢測(cè)、車道線檢測(cè)、車輛計(jì)數(shù)、添加眼線、車牌識(shí)別、字符識(shí)別、情緒檢測(cè)、文本內(nèi)容提取、面部識(shí)別等31個(gè)視覺(jué)實(shí)戰(zhàn)項(xiàng)目,助力快速學(xué)校計(jì)算機(jī)視覺(jué)。

          下載3:OpenCV實(shí)戰(zhàn)項(xiàng)目20講
          小白學(xué)視覺(jué)公眾號(hào)后臺(tái)回復(fù):OpenCV實(shí)戰(zhàn)項(xiàng)目20講即可下載含有20個(gè)基于OpenCV實(shí)現(xiàn)20個(gè)實(shí)戰(zhàn)項(xiàng)目,實(shí)現(xiàn)OpenCV學(xué)習(xí)進(jìn)階。

          交流群


          歡迎加入公眾號(hào)讀者群一起和同行交流,目前有SLAM、三維視覺(jué)、傳感器、自動(dòng)駕駛、計(jì)算攝影、檢測(cè)、分割、識(shí)別、醫(yī)學(xué)影像、GAN、算法競(jìng)賽等微信群(以后會(huì)逐漸細(xì)分),請(qǐng)掃描下面微信號(hào)加群,備注:”昵稱+學(xué)校/公司+研究方向“,例如:”張三 + 上海交大 + 視覺(jué)SLAM“。請(qǐng)按照格式備注,否則不予通過(guò)。添加成功后會(huì)根據(jù)研究方向邀請(qǐng)進(jìn)入相關(guān)微信群。請(qǐng)勿在群內(nèi)發(fā)送廣告,否則會(huì)請(qǐng)出群,謝謝理解~


          瀏覽 64
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  黄色视频在线观看www | 亚洲巨爆乳一区二区三区 | 色国产综合免费视频在线播放 | 国产精品揄拍500视频 | 黄色1级片 |