<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          20 個實例玩轉 Java 8 Stream

          共 12453字,需瀏覽 25分鐘

           ·

          2022-01-15 20:49

          關注我們,設為星標,每天7:30不見不散,架構路上與您共享

          回復架構師獲取資源


          大家好,我是架構君,一個會寫代碼吟詩的架構師。

          先貼上幾個案例,水平高超的同學可以挑戰(zhàn)一下:

          1. 從員工集合中篩選出salary大于8000的員工,并放置到新的集合里。
          2. 統(tǒng)計員工的最高薪資、平均薪資、薪資之和。
          3. 將員工按薪資從高到低排序,同樣薪資者年齡小者在前。
          4. 將員工按性別分類,將員工按性別和地區(qū)分類,將員工按薪資是否高于8000分為兩部分。
          用傳統(tǒng)的迭代處理也不是很難,但代碼就顯得冗余了,跟Stream相比高下立判。Java 8 是一個非常成功的版本,這個版本新增的Stream,配合同版本出現(xiàn)的 Lambda ,給我們操作集合(Collection)提供了極大的便利。
          更多 Java實戰(zhàn)教程可以關注微信公眾號「Java后端」,搜索 Java 關鍵字即可。
          那么什么是Stream
          Stream將要處理的元素集合看作一種流,在流的過程中,借助Stream API對流中的元素進行操作,比如:篩選、排序、聚合等。
          Stream可以由數(shù)組或集合創(chuàng)建,對流的操作分為兩種:

          1. 中間操作,每次返回一個新的流,可以有多個。

          2. 終端操作,每個流只能進行一次終端操作,終端操作結束后流無法再次使用。終端操作會產(chǎn)生一個新的集合或值。

          另外,Stream有幾個特性:

          1. stream不存儲數(shù)據(jù),而是按照特定的規(guī)則對數(shù)據(jù)進行計算,一般會輸出結果。

          2. stream不會改變數(shù)據(jù)源,通常情況下會產(chǎn)生一個新的集合或一個值。

          3. stream具有延遲執(zhí)行特性,只有調(diào)用終端操作時,中間操作才會執(zhí)行。

          Stream可以通過集合數(shù)組創(chuàng)建。
          1、通過 java.util.Collection.stream() 方法用集合創(chuàng)建流
          List list?= Arrays.asList("a", "b", "c");
          // 創(chuàng)建一個順序流
          Stream stream = list.stream();
          // 創(chuàng)建一個并行流
          Stream parallelStream = list.parallelStream();
          2、使用java.util.Arrays.stream(T[] array)方法用數(shù)組創(chuàng)建流
          int[] array={1,3,5,6,8};
          IntStream stream = Arrays.stream(array);
          3、使用Stream的靜態(tài)方法:of()、iterate()、generate()
          Stream stream = Stream.of(1, 2, 3, 4, 5, 6);

          Stream stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
          stream2.forEach(System.out::println);

          Stream stream3 = Stream.generate(Math::random).limit(3);
          stream3.forEach(System.out::println);
          輸出結果:
          0 3 6 9
          0.6796156909271994
          0.1914314208854283
          0.8116932592396652
          streamparallelStream的簡單區(qū)分: stream是順序流,由主線程按順序對流執(zhí)行操作,而parallelStream是并行流,內(nèi)部以多線程并行執(zhí)行的方式對流進行操作,但前提是流中的數(shù)據(jù)處理沒有順序要求。例如篩選集合中的奇數(shù),兩者的處理不同之處:

          如果流中的數(shù)據(jù)量足夠大,并行流可以加快處速度。除了直接創(chuàng)建并行流,還可以通過parallel()把順序流轉換成并行流:

          Optional findFirst = list.stream().parallel().filter(x->x>6).findFirst();

          在使用stream之前,先理解一個概念:Optional

          Optional類是一個可以為null的容器對象。如果值存在則isPresent()方法會返回true,調(diào)用get()方法會返回該對象。
          更詳細說明請見:菜鳥教程Java 8 Optional類
          接下來,大批代碼向你襲來!我將用20個案例將Stream的使用整得明明白白,只要跟著敲一遍代碼,就能很好地掌握。

          案例使用的員工類

          這是后面案例中使用的員工類:
          List personList = new?ArrayList();
          personList.add(new?Person("Tom", 8900, "male", "New York"));
          personList.add(new?Person("Jack", 7000, "male", "Washington"));
          personList.add(new?Person("Lily", 7800, "female", "Washington"));
          personList.add(new?Person("Anni", 8200, "female", "New York"));
          personList.add(new?Person("Owen", 9500, "male", "New York"));
          personList.add(new?Person("Alisa", 7900, "female", "New York"));

          class?Person?{
          ??private?String name; // 姓名
          ??private?int?salary; // 薪資
          ??private?int?age; // 年齡
          ??private?String sex; //性別
          ??private?String area; // 地區(qū)

          ??// 構造方法
          ??public?Person(String name, int?salary, int?age,String sex,String area) {
          ????this.name = name;
          ????this.salary = salary;
          ????this.age = age;
          ????this.sex = sex;
          ????this.area = area;
          ??}
          ??// 省略了get和set,請自行添加

          }


          3.1 遍歷/匹配(foreach/find/match)

          Stream也是支持類似集合的遍歷和匹配元素的,只是Stream中的元素是以Optional類型存在的。Stream的遍歷、匹配非常簡單。

          // import已省略,請自行添加,后面代碼亦是

          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????????List list?= Arrays.asList(7, 6, 9, 3, 8, 2, 1);

          ????????// 遍歷輸出符合條件的元素
          ????????list.stream().filter(x -> x > 6).forEach(System.out::println);
          ????????// 匹配第一個
          ????????Optional findFirst = list.stream().filter(x -> x > 6).findFirst();
          ????????// 匹配任意(適用于并行流)
          ????????Optional findAny = list.parallelStream().filter(x -> x > 6).findAny();
          ????????// 是否包含符合特定條件的元素
          ????????boolean anyMatch = list.stream().anyMatch(x -> x < 6);
          ????????System.out.println("匹配第一個值:"?+ findFirst.get());
          ????????System.out.println("匹配任意一個值:"?+ findAny.get());
          ????????System.out.println("是否存在大于6的值:"?+ anyMatch);
          ????}
          }

          3.2 篩選(filter)

          篩選,是按照一定的規(guī)則校驗流中的元素,將符合條件的元素提取到新的流中的操作。

          案例一:篩選出Integer集合中大于7的元素,并打印出來
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List list?= Arrays.asList(6, 7, 3, 8, 1, 2, 9);
          ????Stream stream = list.stream();
          ????stream.filter(x -> x > 7).forEach(System.out::println);
          ??}
          }
          預期結果:
          8 9
          案例二:篩選員工中工資高于8000的人,并形成新的集合。 形成新集合依賴collect(收集),后文有詳細介紹。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));
          ????personList.add(new?Person("Anni", 8200, 24, "female", "New York"));
          ????personList.add(new?Person("Owen", 9500, 25, "male", "New York"));
          ????personList.add(new?Person("Alisa", 7900, 26, "female", "New York"));

          ????List fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
          ????????.collect(Collectors.toList());
          ????System.out.print("高于8000的員工姓名:"?+ fiterList);
          ??}
          }
          運行結果:
          高于8000的員工姓名:[Tom, Anni, Owen]


          3.3 聚合(max/min/count)

          maxmincount這些字眼你一定不陌生,沒錯,在mysql中我們常用它們進行數(shù)據(jù)統(tǒng)計。Java stream中也引入了這些概念和用法,極大地方便了我們對集合、數(shù)組的數(shù)據(jù)統(tǒng)計工作。

          案例一:獲取String集合中最長的元素。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List list?= Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");

          ????Optional max = list.stream().max(Comparator.comparing(String::length));
          ????System.out.println("最長的字符串:"?+ max.get());
          ??}
          }
          輸出結果:
          最長的字符串:weoujgsd
          案例二:獲取Integer集合中的最大值。
          public?class?StreamTest?{
          ??public?static?void?main(String[] args)?{
          ????List list?= Arrays.asList(7, 6, 9, 4, 11, 6);

          ????// 自然排序
          ????Optional max = list.stream().max(Integer::compareTo);
          ????// 自定義排序
          ????Optional max2 = list.stream().max(new?Comparator() {
          ??????@Override
          ??????public?int?compare(Integer o1, Integer o2) {
          ????????return?o1.compareTo(o2);
          ??????}
          ????});
          ????System.out.println("自然排序的最大值:"?+ max.get());
          ????System.out.println("自定義排序的最大值:"?+ max2.get());
          ??}
          }
          輸出結果:
          自然排序的最大值:11
          自定義排序的最大值:11
          案例三:獲取員工工資最高的人。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));
          ????personList.add(new?Person("Anni", 8200, 24, "female", "New York"));
          ????personList.add(new?Person("Owen", 9500, 25, "male", "New York"));
          ????personList.add(new?Person("Alisa", 7900, 26, "female", "New York"));

          ????Optional max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
          ????System.out.println("員工工資最大值:"?+ max.get().getSalary());
          ??}
          }
          輸出結果:
          員工工資最大值:9500
          案例四:計算Integer集合中大于6的元素的個數(shù)。
          import?java.util.Arrays;
          import?java.util.List;

          public?class?StreamTest?{
          ??public?static?void?main(String[] args)?{
          ????List list?= Arrays.asList(7, 6, 4, 8, 2, 11, 9);

          ????long?count = list.stream().filter(x -> x > 6).count();
          ????System.out.println("list中大于6的元素個數(shù):"?+ count);
          ??}
          }
          輸出結果:
          list中大于6的元素個數(shù):4

          3.4 映射(map/flatMap)

          映射,可以將一個流的元素按照一定的映射規(guī)則映射到另一個流中。分為mapflatMap
          • map:接收一個函數(shù)作為參數(shù),該函數(shù)會被應用到每個元素上,并將其映射成一個新的元素。
          • flatMap:接收一個函數(shù)作為參數(shù),將流中的每個值都換成另一個流,然后把所有流連接成一個流。


          案例一:英文字符串數(shù)組的元素全部改為大寫。整數(shù)數(shù)組每個元素+3。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????String[] strArr = { "abcd", "bcdd", "defde", "fTr"?};
          ????List strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

          ????List intList = Arrays.asList(1, 3, 5, 7, 9, 11);
          ????List intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

          ????System.out.println("每個元素大寫:"?+ strList);
          ????System.out.println("每個元素+3:"?+ intListNew);
          ??}
          }
          輸出結果:
          每個元素大寫:[ABCD, BCDD, DEFDE, FTR]
          每個元素+3:[4, 6, 8, 10, 12, 14]
          案例二:將員工的薪資全部增加1000。
          public?class?StreamTest?{
          ??public?static?void?main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));
          ????personList.add(new?Person("Anni", 8200, 24, "female", "New York"));
          ????personList.add(new?Person("Owen", 9500, 25, "male", "New York"));
          ????personList.add(new?Person("Alisa", 7900, 26, "female", "New York"));

          ????// 不改變原來員工集合的方式
          ????List personListNew = personList.stream().map(person -> {
          ??????Person personNew = new?Person(person.getName(), 0, 0, null, null);
          ??????personNew.setSalary(person.getSalary() + 10000);
          ??????return?personNew;
          ????}).collect(Collectors.toList());
          ????System.out.println("一次改動前:"?+ personList.get(0).getName() + "-->"?+ personList.get(0).getSalary());
          ????System.out.println("一次改動后:"?+ personListNew.get(0).getName() + "-->"?+ personListNew.get(0).getSalary());

          ????// 改變原來員工集合的方式
          ????List personListNew2 = personList.stream().map(person -> {
          ??????person.setSalary(person.getSalary() + 10000);
          ??????return?person;
          ????}).collect(Collectors.toList());
          ????System.out.println("二次改動前:"?+ personList.get(0).getName() + "-->"?+ personListNew.get(0).getSalary());
          ????System.out.println("二次改動后:"?+ personListNew2.get(0).getName() + "-->"?+ personListNew.get(0).getSalary());
          ??}
          }
          輸出結果:
          一次改動前:Tom–>8900
          一次改動后:Tom–>18900
          二次改動前:Tom–>18900
          二次改動后:Tom–>18900
          案例三:將兩個字符數(shù)組合并成一個新的字符數(shù)組。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List list?= Arrays.asList("m,k,l,a", "1,3,5,7");
          ????List listNew = list.stream().flatMap(s -> {
          ??????// 將每個元素轉換成一個stream
          ??????String[] split = s.split(",");
          ??????Stream s2 = Arrays.stream(split);
          ??????return?s2;
          ????}).collect(Collectors.toList());

          ????System.out.println("處理前的集合:"?+ list);
          ????System.out.println("處理后的集合:"?+ listNew);
          ??}
          }
          輸出結果:
          處理前的集合:[m-k-l-a, 1-3-5]
          處理后的集合:[m, k, l, a, 1, 3, 5]

          3.5 歸約(reduce)

          歸約,也稱縮減,顧名思義,是把一個流縮減成一個值,能實現(xiàn)對集合求和、求乘積和求最值操作。

          案例一:求Integer集合的元素之和、乘積和最大值。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List list?= Arrays.asList(1, 3, 2, 8, 11, 4);
          ????// 求和方式1
          ????Optional sum = list.stream().reduce((x, y) -> x + y);
          ????// 求和方式2
          ????Optional sum2 = list.stream().reduce(Integer::sum);
          ????// 求和方式3
          ????Integer sum3 = list.stream().reduce(0, Integer::sum);
          ????
          ????// 求乘積
          ????Optional product = list.stream().reduce((x, y) -> x * y);

          ????// 求最大值方式1
          ????Optional max = list.stream().reduce((x, y) -> x > y ? x : y);
          ????// 求最大值寫法2
          ????Integer max2 = list.stream().reduce(1, Integer::max);

          ????System.out.println("list求和:"?+ sum.get() + ","?+ sum2.get() + ","?+ sum3);
          ????System.out.println("list求積:"?+ product.get());
          ????System.out.println("list求和:"?+ max.get() + ","?+ max2);
          ??}
          }
          輸出結果:
          list求和:29,29,29
          list求積:2112
          list求和:11,11
          案例二:求所有員工的工資之和和最高工資。
          public class?StreamTest?{
          ??public static void main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));
          ????personList.add(new?Person("Anni", 8200, 24, "female", "New York"));
          ????personList.add(new?Person("Owen", 9500, 25, "male", "New York"));
          ????personList.add(new?Person("Alisa", 7900, 26, "female", "New York"));

          ????//?求工資之和方式1
          ????Optional sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
          ????//?求工資之和方式2
          ????Integer sumSalary2 = personList.stream().reduce(0, (sum, p)?->?sum += p.getSalary(),
          ????????(sum1, sum2)?->?sum1 + sum2);
          ????//?求工資之和方式3
          ????Integer sumSalary3 = personList.stream().reduce(0, (sum, p)?->?sum += p.getSalary(), Integer::sum);

          ????//?求最高工資方式1
          ????Integer maxSalary = personList.stream().reduce(0, (max, p)?->?max > p.getSalary() ? max : p.getSalary(),
          ????????Integer::max);
          ????//?求最高工資方式2
          ????Integer maxSalary2 = personList.stream().reduce(0, (max, p)?->?max > p.getSalary() ? max : p.getSalary(),
          ????????(max1, max2)?->?max1 > max2 ? max1 : max2);

          ????System.out.println("工資之和:"?+ sumSalary.get() + ","?+ sumSalary2 + ","?+ sumSalary3);
          ????System.out.println("最高工資:"?+ maxSalary + ","?+ maxSalary2);
          ??}
          }
          輸出結果:
          工資之和:49300,49300,49300
          最高工資:9500,9500

          3.6 收集(collect)

          collect,收集,可以說是內(nèi)容最繁多、功能最豐富的部分了。從字面上去理解,就是把一個流收集起來,最終可以是收集成一個值也可以收集成一個新的集合。
          collect主要依賴java.util.stream.Collectors類內(nèi)置的靜態(tài)方法。

          3.6.1 歸集(toList/toSet/toMap)

          因為流不存儲數(shù)據(jù),那么在流中的數(shù)據(jù)完成處理后,需要將流中的數(shù)據(jù)重新歸集到新的集合里。toListtoSettoMap比較常用,另外還有toCollectiontoConcurrentMap等復雜一些的用法。
          下面用一個案例演示toListtoSettoMap
          public?class?StreamTest?{
          ??public?static?void?main(String[] args)?{
          ????List list?= Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
          ????List listNew = list.stream().filter(x -> x % 2?== 0).collect(Collectors.toList());
          ????Set set?= list.stream().filter(x -> x % 2?== 0).collect(Collectors.toSet());

          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));
          ????personList.add(new?Person("Anni", 8200, 24, "female", "New York"));
          ????
          ????Map map?= personList.stream().filter(p -> p.getSalary() > 8000)
          ????????.collect(Collectors.toMap(Person::getName, p -> p));
          ????System.out.println("toList:"?+ listNew);
          ????System.out.println("toSet:"?+ set);
          ????System.out.println("toMap:"?+ map);
          ??}
          }
          運行結果:
          toList:[6, 4, 6, 6, 20]
          toSet:[4, 20, 6]
          toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

          3.6.2 統(tǒng)計(count/averaging)

          Collectors提供了一系列用于數(shù)據(jù)統(tǒng)計的靜態(tài)方法:
          • 計數(shù):count
          • 平均值:averagingIntaveragingLongaveragingDouble
          • 最值:maxByminBy
          • 求和:summingIntsummingLongsummingDouble
          • 統(tǒng)計以上所有:summarizingIntsummarizingLongsummarizingDouble
          案例:統(tǒng)計員工人數(shù)、平均工資、工資總額、最高工資。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));

          ????// 求總數(shù)
          ????Long count = personList.stream().collect(Collectors.counting());
          ????// 求平均工資
          ????Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
          ????// 求最高工資
          ????Optional max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
          ????// 求工資之和
          ????Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
          ????// 一次性統(tǒng)計所有信息
          ????DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

          ????System.out.println("員工總數(shù):"?+ count);
          ????System.out.println("員工平均工資:"?+ average);
          ????System.out.println("員工工資總和:"?+ sum);
          ????System.out.println("員工工資所有統(tǒng)計:"?+ collect);
          ??}
          }
          運行結果:
          員工總數(shù):3
          員工平均工資:7900.0
          員工工資總和:23700
          員工工資所有統(tǒng)計:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}

          3.6.3 分組(partitioningBy/groupingBy)

          • 分區(qū):將stream按條件分為兩個Map,比如員工按薪資是否高于8000分為兩部分。
          • 分組:將集合分為多個Map,比如員工按性別分組。有單級分組和多級分組。


          案例:將員工按薪資是否高于8000分為兩部分;將員工按性別和地區(qū)分組
          public class?StreamTest?{
          ??public static?void?main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, "female", "Washington"));
          ????personList.add(new?Person("Anni", 8200, "female", "New York"));
          ????personList.add(new?Person("Owen", 9500, "male", "New York"));
          ????personList.add(new?Person("Alisa", 7900, "female", "New York"));

          ????// 將員工按薪資是否高于8000分組
          ????????Map<Boolean, List> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
          ????????// 將員工按性別分組
          ????????Map<String, List> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
          ????????// 將員工先按性別分組,再按地區(qū)分組
          ????????Map<String, Map<String, List>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
          ????????System.out.println("員工按薪資是否大于8000分組情況:"?+ part);
          ????????System.out.println("員工按性別分組情況:"?+ group);
          ????????System.out.println("員工按性別、地區(qū):"?+ group2);
          ??}
          }
          輸出結果:
          員工按薪資是否大于8000分組情況:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
          員工按性別分組情況:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
          員工按性別、地區(qū):{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}


          3.6.4 接合(joining)

          joining可以將stream中的元素用特定的連接符(沒有的話,則直接連接)連接成一個字符串。
          public?class?StreamTest?{
          ??public?static?void?main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));

          ????String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
          ????System.out.println("所有員工的姓名:"?+ names);
          ????List list = Arrays.asList("A", "B", "C");
          ????String string?= list.stream().collect(Collectors.joining("-"));
          ????System.out.println("拼接后的字符串:"?+ string);
          ??}
          }
          運行結果:
          所有員工的姓名:Tom,Jack,Lily
          拼接后的字符串:A-B-C


          3.6.5 歸約(reducing)

          Collectors類提供的reducing方法,相比于stream本身的reduce方法,增加了對自定義歸約的支持。
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List personList = new?ArrayList();
          ????personList.add(new?Person("Tom", 8900, 23, "male", "New York"));
          ????personList.add(new?Person("Jack", 7000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 7800, 21, "female", "Washington"));

          ????// 每個員工減去起征點后的薪資之和(這個例子并不嚴謹,但一時沒想到好的例子)
          ????Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
          ????System.out.println("員工扣稅薪資總和:"?+ sum);

          ????// stream的reduce
          ????Optional sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
          ????System.out.println("員工薪資總和:"?+ sum2.get());
          ??}
          }
          運行結果:
          員工扣稅薪資總和:8700
          員工薪資總和:23700


          3.7 排序(sorted)

          sorted,中間操作。有兩種排序:
          • sorted():自然排序,流中元素需實現(xiàn)Comparable接口
          • sorted(Comparator com):Comparator排序器自定義排序
          案例:將員工按工資由高到低(工資一樣則按年齡由大到小)排序
          public?class?StreamTest?{
          ??public?static?void main(String[] args) {
          ????List personList = new?ArrayList();

          ????personList.add(new?Person("Sherry", 9000, 24, "female", "New York"));
          ????personList.add(new?Person("Tom", 8900, 22, "male", "Washington"));
          ????personList.add(new?Person("Jack", 9000, 25, "male", "Washington"));
          ????personList.add(new?Person("Lily", 8800, 26, "male", "New York"));
          ????personList.add(new?Person("Alisa", 9000, 26, "female", "New York"));

          ????// 按工資升序排序(自然排序)
          ????List newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
          ????????.collect(Collectors.toList());
          ????// 按工資倒序排序
          ????List newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
          ????????.map(Person::getName).collect(Collectors.toList());
          ????// 先按工資再按年齡升序排序
          ????List newList3 = personList.stream()
          ????????.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
          ????????.collect(Collectors.toList());
          ????// 先按工資再按年齡自定義排序(降序)
          ????List newList4 = personList.stream().sorted((p1, p2) -> {
          ??????if?(p1.getSalary() == p2.getSalary()) {
          ????????return?p2.getAge() - p1.getAge();
          ??????} else?{
          ????????return?p2.getSalary() - p1.getSalary();
          ??????}
          ????}).map(Person::getName).collect(Collectors.toList());

          ????System.out.println("按工資升序排序:"?+ newList);
          ????System.out.println("按工資降序排序:"?+ newList2);
          ????System.out.println("先按工資再按年齡升序排序:"?+ newList3);
          ????System.out.println("先按工資再按年齡自定義降序排序:"?+ newList4);
          ??}
          }
          運行結果:
          按工資升序排序:[Lily, Tom, Sherry, Jack, Alisa]
          按工資降序排序:[Sherry, Jack, Alisa, Tom, Lily]
          先按工資再按年齡升序排序:[Lily, Tom, Sherry, Jack, Alisa]
          先按工資再按年齡自定義降序排序:[Alisa, Jack, Sherry, Tom, Lily]

          3.8 提取/組合

          流也可以進行合并、去重、限制、跳過等操作。



          public?class?StreamTest {
          ??public?static?void?main(String[] args) {
          ????String[] arr1 = { "a", "b", "c", "d"?};
          ????String[] arr2 = { "d", "e", "f", "g"?};

          ????Stream<String> stream1 = Stream.of(arr1);
          ????Stream<String> stream2 = Stream.of(arr2);
          ????// concat:合并兩個流 distinct:去重
          ????List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
          ????// limit:限制從流中獲得前n個數(shù)據(jù)
          ????List collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
          ????// skip:跳過前n個數(shù)據(jù)
          ????List collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

          ????System.out.println("流合并:"?+ newList);
          ????System.out.println("limit:"?+ collect);
          ????System.out.println("skip:"?+ collect2);
          ??}
          }
          運行結果:
          流合并:[a, b, c, d, e, f, g]
          limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
          skip:[3, 5, 7, 9, 11]
          好,以上就是全部內(nèi)容,能堅持看到這里,你一定很有收獲。

          文章來源:https://blog.csdn.net/mu_wind/article/details/109516995


          到此文章就結束了。如果今天的文章對你在進階架構師的路上有新的啟發(fā)和進步,歡迎轉發(fā)給更多人。歡迎加入架構師社區(qū)技術交流群,眾多大咖帶你進階架構師,在后臺回復“加群”即可入群。



          這些年小編給你分享過的干貨


          1.idea永久激活碼(親測可用)

          2.優(yōu)質(zhì)ERP系統(tǒng)帶進銷存財務生產(chǎn)功能(附源碼)

          3.優(yōu)質(zhì)SpringBoot帶工作流管理項目(附源碼)

          4.最好用的OA系統(tǒng),拿來即用(附源碼)

          5.SBoot+Vue外賣系統(tǒng)前后端都有(附源碼

          6.SBoot+Vue可視化大屏拖拽項目(附源碼)



          轉發(fā)在看就是最大的支持??

          瀏覽 47
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  自拍偷拍成人在线视频 | 中国美女一级毛片 | 欧美人妻在线中文视频 | 色 五月天婷婷 | 日韩网址在线观看 |